
An Interprocess Communication-based Two-way

Coupling Approach for Implicit-Explicit Multiphysics

Lattice Discrete Particle Model Simulations

Hao Yin∗ Matthew Troemner† Weixin Li∗ Erol Lale∗

Lifu Yang‡ Lei Shen§ Mohammed Alnaggar¶ Giovanni Di Luzio‖

Gianluca Cusatis∗∗∗

September 13, 2024

∗Northwestern University, Department of Civil and Environmental Engineering, Evanston, Illinois, 60208,
United States

†North Fracture Group, Houghton, Michigan, 49931, United States
‡City University of Hong Kong, Department of Architecture and Civil Engineering, Hong Kong, 999077,

China
§Hohai University, College of Water Conservancy and Hydropower Engineering, Nanjing, 210098, China
¶Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37830, United States
‖Politecnico di Milano, Department of Civil and Environmental Engineering, Milan, 20121, Italy

∗∗Corresponding author: g-cusatis@northwestern.edu

1



Abstract

In this study, the researchers have developed a Multiphysics-Lattice Discrete Particle Model

(M-LDPM) framework that deals with coupled-fracture-poroflow problems. The M-LDPM

framework uses two lattice systems, the LDPM tessellation and the Flow Lattice Element

(FLE) network, to represent the heterogeneous internal structure of typical quasi-brittle

materials like concrete and rocks, and to simulate the material’s mechanical and transport

behavior at the aggregate scale. The researchers revisited the LDPM governing equations and

added the influence of fluid pore pressure. They also derived the Flow Lattice Model (FLM)

governing equations for pore pressure flow through mass conservation balances for uncracked

and cracked volumes. The M-LDPM framework was implemented using Abaqus user element

subroutine VUEL for the explicit dynamic procedure of LDPM and user subroutine UEL

for the implicit transient procedure of FLM. The coupling of the two models was achieved

using Interprocess Communication (IPC) between Abaqus solvers. The M-LDPM framework

can simulate the variation of permeability induced by fracturing processes by relating the

transport properties of flow elements with local cracking behaviors. The researchers validated

the M-LDPM framework by comparing the numerical simulation outcomes with analytical

solutions of classical benchmarks in poromechanics.
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Two-way coupling, Interprocess communication, Hydro-mechanical coupling, Lattice discrete

particle model, Dual lattice
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1 Introduction

Durability of materials for buildings and structures (e.g., concrete, stone, wood) is the re-

sult of a complex coupling of mechanics and multiphysical behaviors. While structures are

suitably designed to consider strength criteria at the time of construction, the long-term

behavior may not be appropriately predicted, resulting in additional material and economic

costs, and often compounding the initial carbon emissions. It is, therefore, necessary to en-

sure design principles take into account the many factors which influence material durability

to produce a structure with the optimal lifespan, and thus minimal environmental impact.

The interplay between fracture, mass transport, and heat transfer phenomena, is a widely

studied multiphysics phenomenon. It has been studied by considering the internal structure

of a multi-phase material and has attracted growing attention as it helps better understand

the related phenomena. Previous experimental studies have shown that fracture permeability

involves multiple physical processes, and is influenced by various factors such as fracture aper-

ture and roughness [54, 57, 59], chemical precipitation and dissolution [17, 21], and thermal

effects [46]. In particular, open and connected cracks have a strong influence on permeability.

A large amount of previous work on fracture permeability has been conducted on prefrac-

tured (split or sawn) specimens and has shown that rock permeability is strongly related

to density, spacing, orientation, width, and length of fractures within specimens [12, 15, 28].

However, researchers suggested that permeability studies of rocks fractured at in situ condi-

tions through triaxial compression or direct shear tests can better represent fracture prop-

erties in the subsurface than prefractured or artificial specimens [10, 23, 32, 41, 49]. Indeed,

some factors such as the influence of stress state during fracture, the transition from brittle

to ductile failure, effective stress and hysteresis effects can be only investigated under in situ

conditions.

Furthermore, simulating the fluid transport and hydro-mechanical coupling effect at different
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length scales is possible. At the microscopic level, fluid flow can be solved by using Navier-

Stokes equations with certain assumptions. The hydro-mechanical coupling effect can also

be captured through force-based interaction across the fluid-solid interface [11,44]. However,

this approach requires knowledge of the pore network structure and high computational

resources. An alternative to the costly microscopic approach is a mesoscopic/macroscopic

approach [8,27,31,35,53] which adopts diffusion equations to describe fluid flow in a porous

medium and relies on phenomenological laws such as Darcy’s law, Fick’s law, and lubrication

theory. By introducing diffusion coefficients, such as hydraulic conductivity, permeability,

and diffusivity in the sense of homogenization over the multi-phase mixture [19, 20], this

approach benefits from affordable computational cost. The flow solver and length scale

choice involves a trade-off between physical accuracy and computational cost.

This work develops a numerical framework called the Multiphysics Lattice Discrete Particle

Model (M-LDPM) to study the two-way coupling behavior of porous flow and fracture perme-

ability of quasi-brittle materials in three-dimensional (3D) simulations. The M-LDPM frame-

work has been verified by simulating various classical benchmark examples, including 1D

Terzaghi’s consolidation and hydraulic fracturing. The proposed model falls in the broader

category of discrete models formulated to simulate material heterogeneity [7,11,27,31,40,55]

and its effect on fracturing behavior, which in turn is crucial to predict materials fracture

permeability. This study has two major objectives: (1) to provide a solid theoretical and

computational framework to investigate the correlation between cracking and flow events on

a small scale (tens of microns) with the response of laboratory specimens on a greater scale

(millimeters to centimeters); (2) to help interpret the results of complex fracture permeabil-

ity laboratory experiments. It is important to note that although the model is suitable for

field-level use along with applications that represent large-scale features like rock joints and

faults, appropriate multiscale techniques are required for those applications, and this paper

focuses solely on the objectives previously mentioned.
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2 Lattice Discrete Particle Model (LDPM) for multi-

physics analyses

2.1 Topologically dual systems of lattice models

Lattice models of solids have been motivated, in large part, by the discontinuous and het-

erogeneous nature of material structure and its breakdown under external loading. These

models have been extensively developed over the past few decades, enabling researchers

to study the material structure-property relationships in new and innovative ways. Fur-

thermore, lattice models are now being extended to include additional physical, chemical,

or biological processes to ensure the material’s durability and sustainability under rapidly

changing environmental conditions.

Discretization of the material domain plays a crucial role in the representation of mechan-

ical or transport behaviors in the presence of material heterogeneity. Among the various

discretization techniques, the most promising method is one that naturally captures the in-

trinsic geometric properties of material internal structure (e.g., heterogeneity, anisotropy)

while also possessing a topologically dual geometric system. One of the most famous exam-

ples of the topologically dual systems is the Voronoi-Delaunay dual graph [18].

This duality is particularly important to lattice models. Many lattice models use Voronoi

and/or Delaunay diagrams for geometric characterization to achieve unbiased spatial dis-

cretization and to capture the intrinsic heterogeneous structure of the material. If one of

these geometric structures is employed for spatial discretization, the duality provides a nat-

urally coupled spatial discretization for the void or different phase of material within the

same model domain. This facilitates multi-field analysis with strong coupling between dif-

ferent phases.
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The dual graph approaches have been widely adopted in subjects such as physics, chemical

engineering, biological engineering, and material sciences in the past several decades [1,2,9,

29, 37, 42, 51]. In poromechanics, the work of Grassl [25] introduced the concept of a dual

lattice with aligned cracks and conduit elements, allowing for an accurate reflection of the

crack opening effect on the flow. The dual lattice approach was later extended to 3D [26].

Several other papers have employed this concept, e.g., for simulating cracking due to rebar

corrosion [22] and hydraulic fracturing [3, 4, 50]. Li et al. [36] have applied the dual lattice

concept to shale fractures by adding effects of mechanical volumetric strain rate on pressure.

Shen et al. [47,48] have used the dual lattice concept to accurately simulate concrete thermal

spalling and multiaxial load-induced thermal strain at high temperatures. Yang et al. [55,56]

have simulated volumetric strain and cracking in concrete induced by alkali-silica reaction

within the dual lattice framework.

2.2 LDPM under multiphysics context

A typical usage of topologically dual lattice systems is the Multiphysics-Lattice Discrete Par-

ticle Model (M-LDPM) for the multiscale multiphysics analysis of granular-dominant quasi-

brittle materials (e.g., concrete, rock). M-LDPM is formulated in a discrete poromechanics

setting by adopting two coupled dual lattices simulating mechanical and transport behaviors,

respectively. The model adopts an “a priori” discretization of the internal structure of the

material at the mesoscale, which is the length scale of major material heterogeneities.

2.2.1 LDPM basis

Originally proposed by Cusatis et al. [13,14], the Lattice Particle Discrete Model (LDPM) cell

system provides a geometrical characterization for fracture behaviors of concrete, and then

extended to other quasi-brittle materials [36, 39]. To capture the granular nature of the in-
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ternal mesostructure, LDPM tessellates the model domain with randomly packed polyhedral

cells, which represent the volumes of cementitious fine mortar surrounding coarse aggregate

particles. Figure. 1 briefly illustrates the construction of LDPM “particle-facet-cell” system

and its topologically dual Flow Lattice Model (FLM) network [58], which provides the ge-

ometrical characterization of the flow (transport) behaviors of the material. It is proposed

to be more reflective of the tortuosity of the flow path (so-called “heterogeneity” of the 3D

flow network) in the matrix phase of the cementitious materials. When cracks appear, the

crack openings at the LDPM facets will cause the growth in the permeability/conductivity

of the material. Such a coupling with the cracking behavior is one of the key features of the

FLM, as a part of the M-LDPM framework.

2.2.2 Dual graph of LDPM tessellation

The construction of LDPM cell system can be illustrated as follows:

(i) Non-overlapped spherical particles are randomly placed from the largest to the smallest

size in the model domain as the idealized aggregates or rock grains (see Fig. 1a). The size

distribution of the spherical particles can follow a grain size curve, e.g., Fuller curve for

concrete [24]. Detailed placation algorithm can be found in [14].

(ii) A constrained Delaunay tetrahedralization connects the particle centers and creates

tetrahedra (called LDPM tetrahedra) that tessellate the model domain. Within each LDPM

tetrahedron, a facet system is formulated: (1) edge points are defined at midways of the edges

belonging to the associated particles (e.g., E12 for P1 and P2 in Fig. 1b); (2) face-points are

defined in association with a triangular face formulated with three adjacent particles. For

each face of the tetrahedron, the corresponding face-point must be located at the connection

of the particle center and the edge-point belonging to the edge opposite to that particle

(e.g., F4 for face P1P2P3 must be located at the connection of E12 and P3 in Fig. 1b); (3)
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similarly, the tet-points are defined as the midways identified on the straight lines connecting

face-points of the tetrahedra and the fourth particles, which are opposite to the face-points

(e.g., tet-point N for tetrahedron P1P2P3P4 must be located at the connection of F4 and P4

in Fig. 1b). By formulating triangular facets with vertices consisting of one tet-point, one

edge-point, and one face-point, 12 facets (also called LDPM facets, see Fig. 1c) in total can be

formulated within each LDPM tetrahedron. Facets belonging to adjacent LDPM tetrahedra

surround particles and tessellate the model volume into a system of polyhedral cells (Fig. 1d,

e, and f). This 3D domain tessellation is anchored to the Delaunay tetrahedralization but

does not exactly coincide with the classical Voronoi tessellation. The LDPM facets describe

the potential crack locations in section 3. As often verified in practice, cracks occur at the

grain interface and in the embedding matrix as opposed to cutting through grains.

Figure 1: Topologically dual lattice of LDPM tessellation, modified from [58]

(iii) As the dual graph of the LDPM tessellation, a flow lattice network can be formed by

connecting the tet points belonging to each pair of two adjacent LDPM tetrahedra with

1D line transport elements, the resulting network is shown on the right of Fig. 1. At the
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mesoscale level, the scale of the major heterogeneity of the material (coarse aggregate par-

ticles), two phenomena are explicitly accounted by the flow lattice network for (a) the tor-

tuosity of the flow path that is preferentially located in the mortar between adjacent coarse

aggregate particles; and (b) the effect of cracking that increase permeability/conductivity.

As introduced in the next section, the dual lattice topology enables the seamless coupling of

the fracture and flow behavior.

It would be important to notice that the current model does not have the resolution to ac-

count for some smaller-scale physical phenomena. Taking concrete at the microscopic level

as an example, the influence of the Interfacial Transition Zone (ITZ) must be considered.

The ITZ, which is approximately 100 microns around each aggregate particle, exhibits a

porosity that is about 40% higher than that of the cement paste. To account for this effect

the model would need to be formulated at a smaller length scale. This is beyond the scope

of this paper.

3 Coupling of poroflow and cracking behaviors

The mechanical and flow behaviors of the material are modeled with the M-LDPM governing

equations, in the following section, the mechanical part and the flow part of M-LDPM

governing equations are formulated in two numerical algorithms, the derived matrix forms

are also presented. The coupling mechanisms are highlighted and can be then implemented

for practical applications, as introduced in section 4.

3.1 Governing equations

LDPM Kinematics and Constitutive Laws

The LDPM formulation [14] is briefly reviewed first. In the LDPM formulation, adjacent cells
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interact through shared triangular facets (see Fig. 1d). Rigid-body kinematics is adopted

to describe the heterogeneous deformation of the cell system. Three strain measures, one

normal component and two shear components, are defined at each facet as:

eN =
1

`
nT · [[uC ]]; eM =

1

`
mT · [[uC ]]; eB =

1

`
bT · [[uC ]] (1)

where [[uC ]] is the displacement jump vector calculated by the displacements and rotations

of the nodes adjacent to the selected facet; ` = tetrahedron edge associated with the facet; n

is a unit vector normal to each facet, and m and b are two mutually orthogonal unit vectors

contained in a plane orthogonal to n.

The facet stress vector applied to the solid phase, t = tNn + tMm + tBb, is calculated

through appropriate constitutive laws, which describes various phenomena of the solid grain

interaction (Fig. 1e and f).

In the elastic regime, the mechanical facet stress components are proportional to the corre-

sponding strain components:

t =


tN

tM

tB

 =


EN 0 0

0 EM 0

0 0 EB



eN

eM

eB

 (2)

where EN = E0 is the normal modulus, EM = EB = αE0 is the shear modulus, and

α = normal-shear coupling coefficient. Beyond the elastic limit, the vectorial constitutive

laws are formulated to reproduce three distinct nonlinear phenomena. The first source

of nonlinearity is related to fracturing and cohesive behavior under tension for eN > 0.

Following the work of Cusatis et al. [14], one can define effective strain and effective stress as

e = [e2N + α (e2M + e2B)]
1/2
, t = [t2N + (t2M + t2B) /α]

1/2
, respectively, and compute the normal

and shear stresses as: tN = eN(t/e), tM = eM(t/e), tB = eB(t/e). The effective stress t is
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incrementally elastic
(
ṫ = E0ė

)
and must satisfy the inequality 0 ≤ t ≤ σbt(e, ω), in which:

σbt = σ0(ω) exp [−H0(ω) 〈emax − e0(ω)〉 /σ0(ω)] (3)

where the Macaulay bracket defines: 〈x〉 = max(x, 0), and ω is defined as: tanω =

eN/
√
α (e2M + e2B). The function σ0(ω) represents the strength limit for the effective stress

with a smooth transition between pure tension (ω = π/2) and pure shear (ω = 0), and is

given by:

σ0(ω) = σt
− sin(ω) +

√
sin2(ω) + 4α cos2(ω)r2st

2α cos2(ω)r2st
(4)

where rst = σs/σt is the ratio between the mesoscale shear strength (or cohesion) σs and

the mesoscale tensile strength σt. After the maximum effective strain reaches its elastic

limit e0(ω) = σ0/E0, the stress boundary σbt decays exponentially with a softening modulus,

H0(ω) = Hs/α + (Ht − Hs/α)(2ω/π)nt , which provides a smooth transition from softening

behavior under pure tension H0 = Ht, to perfectly plastic behavior under pure shear H0 = 0.

For the correct energy dissipation during mesoscale damage localization to be preserved, the

softening modulus in pure tension is expressed as Ht = 2E0/ (`t/`− 1), where `t = 2E0Gt/σ
2
t

is the characteristic length, Gt is the mesoscale fracture energy, and ` is the length of the

tetrahedron edge (mechanical lattice element) associated with the facet.

Since relevant to the effect of cracking on permeability discussed later, it is worth pointing

out that the mesoscale crack opening components (normal and shear) can be calculated as:

δi = ` (ei − ti/Ei) (i = N,M,B) (5)

The second source of nonlinearity is from pore collapse and material compaction. For com-

pressive condition eN < 0, the effective stress is again incrementally elastic, and is constrained

by the strain-dependent stress boundary, −σbc (eD, eV ) 6 t 6 0, in which eV is the volumetric
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strain, and eD is the deviatoric strain. The strain-dependent stress boundary is modeled by

an exponential evolution for pore collapse, compaction, and re-hardening as illustrated by:

σbc =


σc0 −eV ≤ 0

σc0 + 〈−eV − ec0〉Hc (rDV ) −eV ≤ ec1

σc1 (rDV ) exp [(−eV − ec1)Hc (rDV ) /σc1 (rDV )] −eV > ec1

(6)

where rDV = |eD| /eV for eV > 0 and rDV = − |eD| / (eV − eV 0) for eV ≤ 0 in which eV 0 = κc3ec0 · ec0 = σc0/E0

is the volumetric strain at the onset of pore collapse, σc0 is the mesoscale yielding com-

pressive stress, ec1 = κcoec0 is the strain at which the rehardening starts. κc0 and κc3 are

material parameters. σc1 (rDV ) = σc0 + (ec1 − ec0)Hc (rDV ) in which Hc (rDV ) is defined as

Hc (rDV ) = Hc1 + (Hc0 −Hc1) / (1 + κc2 〈rDV − kc1〉) where Hc0, Hc1, κc1 and κc2 are material

parameters.

The third source of nonlinearity is related to frictional behavior under compression. This

can be simulated effectively through a non-associative incremental plasticity formulation in

which, during plastic flow, ϕ (tN , tM , tB) = 0, the incremental shear stresses are computed as

ṫM = EM
(
ėM − ėPM

)
, ṫB = EB

(
ėB − ėPB

)
and the normal stress is simply elastic ṫN = EN ėN .

In the previous expressions, ϕ (tN , tM , tB) is the yielding function, ePM = λ̇∂ψ/∂tM and

ePB = λ̇∂ψ/∂tB are the shear plastic strain increments, and λ is the plastic multiplier, ψ =

ψ0 (t2M + t2B)
1/2

is the plastic potential. The yielding function can be formulated according

to a Mohr-Coulomb criterion as

ϕ =
(
t2M + t2B

)1/2 − σs + µ0tN (7)

in which µ0 is the internal friction coefficient.

The facet stresses calculated through the constitutive laws described above represent the
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stresses carried by the solid phase. Equilibrium considerations at the facet level allow for

the reasonable assumption of a parallel coupling between the stresses carried by the solid

phase and those by the fluid phase. In this work, the effective stress concept from Biot’s

theory of poroelasticity [5] is adopted, and the total stress vector on each facet can be

computed as

ttotal = t− bteigen (8)

where b is the Biot coefficient, and teigen = pn, p is the magnitude of effective pore pressure of

fluid. The negative sign in Eq. 8 comes from the pressure sign convention, which is positive

for the fluid and negative for the solid.

Equilibrium

The equilibrium is obtained through the linear and angular momentum balance equations of

each polyhedral cell subjected to the force resultants obtained by multiplying the tractions

in Eq. 8 times the facet areas for all facets belonging to the given cell, one can write:

∑
k∈FI

Akt
total
k + V Ib = MI

uüI + MI
ϕϕ̈I (9)

∑
k∈FI

Akc
I
k × ttotalk + V IaI × b = IIuüI + IIϕϕ̈I (10)

where FI is the set of facets surrounding the node PI (located inside cell I); Ak is the pro-

jected area of k-th facet orthogonal to the corresponding tetrahedron edge, V I is the cell

volume, cIk is the distance between facet centroid and particle center, aI is the distance be-

tween the cell centroid and the particle center, bI is the external body force, tk is the stress

traction vector, MI
i and IIi (i = u, ϕ) are inertia matrices, and uI and ϕI are displacement

and rotation vectors, respectively. In the current implementation, an explicit dynamic algo-

rithm (based on a central difference scheme) is adopted to solve the equations above by a

quasi-static method (i.e., small loading rate) and to simulate the static mechanical behavior.

This offers the advantage of avoiding the convergence problems that implicit schemes often

13



encounter in handling softening behaviors.

Discrete Formulation of Fluid Flow

This section discusses the formulation of flow phenomena in the Flow Lattice Element (FLE)

system, a discrete topologically dual with the LDPM. Following Li et al. [36], the formulation

of FLE applies to the fluid flow under full saturation conditions, constant room temperature,

and assuming that fluid behaves as a slightly compressible Newtonian fluid. According to the

settings depicted in [58], each FLE connects the centroids of two adjacent LDPM tetrahedra

in the undeformed configuration: named tet P1P2P3P4 and tet P1P2P3P5 (Fig. 2a). The two

adjacent LDPM tetrahedra have a common triangular face A0 with a normal n, across which

an FLE connects the tetpoints N1 and N2 located inside the two tetrahedra. A directional

vector e orienting from N1 to N2 represents the flow direction in the FLE. The FLE is

associated to two pyramidal volumes, V1 and V2, identified by the points P1, P2, P3, N1 and

P1, P2, P3, N2. The volumes can be computed as Vi = Ali/3 (i = 1, 2), where A = |n · e|A0

is the projected area of triangular cross-section P1P2P3 (A0) in the direction e; the segment

lengths li are associated with the total length of FLE l, which intersects the cross-section

P1P2P3 (A0), one can define the length proportionality coefficients which satisfy the relations

gi = li/l (i = 1, 2).

The direct coupling between the mechanical model and the flow model lays in the information

of the local crack openings of six sub-parallel LDPM facets, with respect to the flow direction

e, i.e., δiNj (j = 1, 2, 3) associated with Vi (i = 1, 2) in Fig. 2b, which is updated by the

mechanical model. These sub-parallel LDPM facets have the areas Aifj (Fig. 2c) and the

inspection lines of facets on either side V1 or V2 with the triangular face A0 have the lengths

of lfj.

Fluid Flux for Uncracked Material

The mass of fluid in the uncracked control volume Vi (i = 1, 2) can be written as M i
fu = mfiVi
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Figure 2: Diagrams of the Flow lattice element (FLE): a) FLE geometry, b) the associated
LDPM facets; c) the cracked triangle face and the illustration of normal crack opening;

in which mfi is the fluid mass content, defined to be the fluid mass per unit reference

volume. The change in fluid mass content can be related to the increment of fluid content

ζi = (mfi −mf0) /ρf0, where mf0 and ρf0 are fluid mass content and density in the reference

state, respectively. For slightly compressible fluids, the fluid density in the current state can

be related to ρf0 by defining the bulk modulus Kf ; one can write ρfi = ρf0 [1 + (pi − p0)/Kf ]

(i = 1, 2), where pi is the current fluid pressure in Vi, and p0 is the initial/reference pressure.

According to the classic theory of poromechanics [5,43], the increment of fluid content, ζi, can

be expressed as a linear combination of the volumetric strain, evi, of the solid phase defined

as the relative variation of the solid volume, and the fluid pressure, pi, as ζi = bevi + pi/Mb,

where Mb denotes the Biot modulus (also defined as the reciprocal of the so-called storage

coefficient). It is worth pointing out that b and Mb may vary due to material heterogeneity.

The effect of this variation is insignificant in the context of this paper and will be neglected

thereinafter. Also, the previous discussion on b and its evolution with damage also holds for

Mb. Again, in absence of relevant experimental data, a constant value is actually used in

this paper.
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One can write the time variation of the fluid mass in the control volume Vi (i = 1, 2) as:

Ṁ i
fu = ρf0

(
bėvi +

ṗi
Mb

)
Vi (11)

The mass flux through the uncracked area A from V1 into V2 reads Qfu = Ajp, the flux

density jp can be obtained by using Darcy’s law, which can be written as:

jp = −ρ̄f
κ0
µf
gp (12)

where κ0 and µf denote the intrinsic permeability of the material and the fluid viscosity,

respectively, ρ̄f = g2ρf1 + g1ρf2 is an estimate of the weighted average density of fluid in the

volume V , and gp is the discrete estimation of pore pressure gradient from V1 into V2.

Fluid Flux for Cracked Material

The influence of cracks on the FLE can be considered in two parts: (1) the fluid mass

stored in the cracked volumes, and (2) the fluid flux through the cracked surfaces. The fluid

mass stored in the cracks is M i
fc = ρfiVci, where the cracked volume can be expressed as

Vci =
∑3

j=1A
i
fjδ

i
Nj, A

i
fj are the areas of six LDPM facets associated with the FLE Aif1, A

i
f2,

and Aif3 belonging to Vi (i = 1, 2), and δiNj are the normal crack openings, as shown in

Fig. 2b and c.

The time variation of the fluid mass in the cracks can be written as:

Ṁ i
fc = ρf0

Vci
Kf

ṗi + ρfiV̇ci (13)

The fluid mass flux, Qfc, from V1 into V2 associated with the cracks, can be approximated

by assuming a steady laminar flow between two crack surfaces with a cross section of length

lfj and width δiNj with j = 1, 2, 3, where lfj represents the intersection of the j th facet with
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the tetrahedron face A (Fig. 2b). In this case, the solution of a two-dimensional Poiseuille

flow in a channel, known as Poiseuille’s formula, can be adopted [38]. One can write

Qfc = ρ̄f
κc
µf
A
p1 − p2

l
(14)

where

κc =
1

12A

(
g2
Ic1

+
g1
Ic2

)−1
(15)

and Ici =
∑3

j=1 lfj
(
δiNj
)3

(i = 1, 2). Connection in series of the cracked permeabilities in Vc1

and Vc2 is assumed for deriving Eq. 15.

Mass Balance Equations

The total fluid mass and total fluid flux can be obtained by adding the contributions from the

uncracked and cracked domains. By collecting all terms introduced above and normalized

both left and right hand sides with the reference fluid density ρf0, the mass balance equations

for volume V1 and V2 can be written as:

(
bėv1 +

ṗ1
Mb

)
V1 +

Vc1ṗ1
Kf

+
ρf1V̇c1
ρf0

+Qfu +Qfc = 0(
bėv2 +

ṗ2
Mb

)
V2 +

Vc2ṗ2
Kf

+
ρf2V̇c2
ρf0

−Qfu −Qfc = 0

(16)

3.2 The Lattice Discrete Particle Model (LDPM) implementation

Following the discrete formulation of the FLE [58], by defining the discrete estimation of

pore pressure flux in Eq. 12 as:

gp = e · n (p2 − p1) /l (17)
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where p1, p2 are the values of fluid pressure at points N1 and N2, respectively, the governing

equations for a FLE volume equivalent to Eqs. 16 can be rewritten as:

(
bėv1 +

ṗ1
Mb

)
V1 +

Vc1ṗ1
Kf

+
ρf1V̇c1
ρf0

+ ξ
A

l
(p2 − p1) = 0(

bėv2 +
ṗ2
Mb

)
V2 +

Vc2ṗ2
Kf

+
ρf2V̇c2
ρf0

− ξA
l

(p2 − p1) = 0

(18)

where the effective permeability reads ξ = ρ̄f (κ0 + κc) / (ρf0µf ). The discrete-type governing

equations in Eqs. 18 can then written in the matrix form, which reads:

Mṗ + Kp + S = 0 (19)

where,

M = V

 g1C1 0

0 g2C2

 (20)

K =
A

l

 ξ −ξ

−ξ ξ

 (21)

S = V

[
g1S1 g2S2

]T
(22)
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p =

[
p1 p2

]T
(23)

where Ci = M−1
b + Vci (KfVi)

−1 and Si = bevi + ρfiVc (ρf0Vi)
−1. It is worth observing that,

to reduce the memory requirements of the calculations, it is possible, without significant

difference in the results, to substitute Ci and Si(i = 1, 2) with the volume averages C̄ =

g1C1 + g2C2 and S̄ = g1S1 + g2S2. The global matrices of the overall governing equations of

the flow problem are obtained by assembling the matrix contributions of all flow elements.

There are various types of boundary layer elements as introduced in [58], Dirichlet-type

boundary conditions can be directly imposed on the external nodes of the boundary layers.

The fluxes of the boundary layer elements can also be calculated. The volumetric flow rate

over the boundaries can be estimated through the sum of the fluxes (Riemann sum), given

the perpendicularity of the boundary layer elements to the model boundaries. In this work,

the time integration of the flow problem was performed by means of the Backward Euler

method.

Following [58], the M-LDPM implementation of poroflow in Abaqus should use the incre-

mental form of the governing equations, which are given by:

f (un+1) ≈ f (un) +
∂f (un)

∂u
∆u = 0

∂f (un)

∂u
∆u = −f (un)

(24)

where

f (u) =

f1
f2

 =

V g1C1ṗ1 + Aξ/l (p1 − p2) + V g1S1

V g2C2ṗ2 − Aξ/l (p1 − p2) + V g2S2

 (25)

The element level entries of the Jacobian matrix and the right-hand side vector corresponding
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to Eqs. 24 and 25 are calculated by:

∂f (un)

∂u
=

∂f1/∂p1 ∂f1/∂p2

∂f2/∂p1 ∂f2/∂p2

 (26)

and

−f (u) = −
[
f1 f2

]T
(27)

In contrast to continuous or other discrete models, in which the same nodal sites are often

used to represent mechanical (i.e., displacements) and flow-related quantities (e.g., moisture

content and temperature), in topologically dual systems of lattice models, the nodal sites

of the transport/flow network and mechanical lattices are always different. Furthermore,

a challenge arises if different solvers are chosen for different analyses (e.g., explicit for me-

chanical solver, implicit for flow solver), as the time step sizes would then vary substantially.

Different meshes and time scales of the coupled fields can complicate the coupling process

(also referred to as “multidomain” or “multimodel” coupling). In the following section, a

framework for coupled analyses of lattice models will be discussed.

4 Two-way coupling framework

The multiphysics problems, with the example of the fully two-way coupled poroflow problem,

can be solved in the so-called M-LDPM framework with the help of Interprocess Communica-

tion (IPC). Under this framework, each physical solver can be considered as an independent

process. The periodic data communication between processes (e.g., Abaqus/standard solver

for the flow part and Abaqus/Explicit solver for the mechanical part) allows a sequential
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coupling mechanism. The spatial mappings and temporal synchronization between the two

processes allow the coupling to run smoothly and robustly.

4.1 Coupling Procedure

In the two-way coupling procedure, the algorithms are implemented through Abaqus user-

defined elements VUEL for the LDPM and UEL for the FLM . Abaqus solvers (Abaqus/standard

for the FLM and Abaqus/Explicit for the LDPM) control the flow events in the respective

analysis and the data exchange between both models is achieved via the IPC. The main

steps that achieve the two-way communication during a single integration time step are in-

troduced below following a temporal ordering, for LDPM: (1) update the element dynamics

(nodal positions, geometries), (2) exchange data with the coupled analysis (i.e. FLM), (3)

compute strains, and stresses based on the constitutive models and multiphysics coupling

mechanisms, (4) compute internal forces on the LDPM elements; For FLM, the steps are (1)

update the element field variables (nodal pore pressures), (2) exchange data with the coupled

analysis (i.e. LDPM), (3) compute the tangential stiffness matrix (jacobian or AMATRX

matrix) and the right-hand side vector (RHS vector), (4) iteratively compute increment until

the convergence is reached.

In the M-LDPM framework, the data that needs to be exchanged between solvers are mainly

the field variables. For example, during the coupled analysis, the crack openings on LDPM

facets need to be passed from LDPM side to FLM side, in order to calculate the crack-

enhanced permeability/conductivity. Aparts from the field variables, model settings or pa-

rameters of the two models can be passed to each other for initialization purposes.

Each tet element in LDPM mesh is corresponding to a tet point (node) in FLM mesh, the

tet point nodal value will be mapped to 12 facets in the corresponding tet element. In such

a way, each tet element has a uniform value in the diffusion field, because all 12 facets have
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the same value to the corresponding tet point.

It is worth noting that all the simulations in this work were done on a single processor within

a single thread. There is a huge potential to speed up the simulations by parallelizing the

mechanical and flow problems over several processors. Parallelization of LDPM simulations

is relatively straightforward, as the explicit time integration scheme is naturally suitable

for the domain-level (split the model into a number of topological domains) or loop-level

(parallelizes element operation loops in the code) parallelization. On the contrary, the par-

allelization of the FLM simulations is less effective, as the flow problems typically favor the

implicit schemes (to achieve relatively large time steps), which require direct solving of large

sparse matrices. The parallelization can be either made in element operations for the matrix

solving or can be made through sophisticated matrix solving techniques. However, this is

beyond the scope of this work and will remain as a subsequent topic.

Figure 3: schematic diagram of M-LDPM two-way coupling procedure
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4.2 Data communication between solvers

Inter-process communication (IPC) refers to the coordination of activities among cooperat-

ing processes. This communication could involve a process letting another process know

that some event has occurred or the transferring of data from one process to another.

For our applications of IPC in solving Multiphysics problems, the processes are numerical

ODE/PDE solvers (e.g., Abaqus/Ansys/in-house codes/other solvers). Typical IPC media

include shared memory, sockets, and pipes [33,34]. Among these, named pipes are employed

as the IPC media in this work.

Named pipes are a simple synchronized way of passing information between two processes. A

named pipe can be viewed as a special file that can store data and uses a “First In First Out

(FIFO)” access scheme to retrieve data. A named pipe can exist independently of the process.

In a logical view of a pipe, data is written to one end and read from the other, as shown in

Fig. 4. The system provides synchronization between the reading and writing process. It

also solves the producer/consumer problem: writing to a full pipe automatically blocks, as

does reading from an empty pipe. The system also assures that there are processes on both

ends of the pipe at all time. The programmer is still responsible, however, for preventing

deadlock between processes [34].

During a two-way coupling analysis, each process suspends operations periodically at one

of two locations, referred to as synchronization points, and performs a data exchange with

the coupled process, as illustrated in Fig. 4. The first synchronization point is located at

the initialization step of the analysis, prior to commencing the first time increment. This

synchronization point will be called only once and, hence, allows for initial configurations to

be exchanged between processes. The second synchronization point occurs at the end of a

completed increment when the target time is reached in each process. This synchronization

point is called multiple times as the simulation advances in time. At every synchronization
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Figure 4: Schematic diagram of the Inter-process Communication (IPC) between solvers at
a synchronization point

point each process waits to receive the requested data from the coupled process before

continuing. Therefore, for a two-way coupled simulation the synchronization point represents

a point when both analyses coincide in solution time.

4.3 Coupling and time incrementation schemes

4.3.1 Coupling scheme

There are two typical coupling schemes: (1) parallel explicit coupling scheme (a.k.a. Ja-

cobi scheme), both simulations are executed concurrently, exchanging fields to update the

respective solutions at the next target time. This scheme is more efficient in the use of

computing resources; less stable than the sequential scheme; (2) sequential explicit coupling

scheme (a.k.a. Gauss-Seidel scheme), the simulations are executed in sequential order. One

analysis leads while the other analysis lags the simulations. The parallel explicit coupling
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(Jacobi) scheme is used in this work. Figure 5 illustrates the parallel coupling scheme, the

horizontal lines represent simulation time. The dots represent increments (or time steps)

for a particular analysis in the coupled simulation. The dashed vertical arrows denote data

exchange in the direction of the arrowheads between the analysis codes.

Figure 5: Parallel explicit coupling (Jacobi) scheme for the data exchange, modified from [30].

4.3.2 Time incrementation scheme

In many applications, the coupled two processes may have very distinct scales of time in-

crements (e.g., for a coupled poroflow problem, explicit mechanical analysis has a stable

time increment typically ranged 10−7–10−3 s, while implicit flow analysis has no stable time

increment requirement, but for better convergence a time increment ranged 10−1–103 s is

used).

When the time increments of coupled two processes differ largely, one may use time scaling

factor, ktime, to scale the time increment of one analysis for the synchronization, or use other

techniques such as subcycling time incrementation scheme (see Fig. 6). In subcycling, the

analysis with a larger time increment (generally, the implicit analysis) ramps loads from the

values of the previous coupling step to the values at the target time. In the analysis with a

smaller time increment (generally, the explicit analysis) the loads are applied at the start of

the coupling step and kept constant over the coupling step. Given the large discrepancy in

the time increments of two coupled analyses, and to save the computational cost, both the
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time scaling factor and subcycling approach are used in this work.

Figure 6: Subcycling time incrementation scheme, modified from [30]. For M-LDPM, Code
A or “E” stands for explicit mechanical analysis; Code B or “I” stands for implicit flow
analysis.

5 Numerical example

The two-way coupling framework is verified by three examples: (i) Terzaghi’s consolidation,

(ii) radial expansion of pressurized hollow cylinder, and (iii) hydraulic fracturing of hollow

cylinder. These verification exercises are essential to ensure that the numerical model accu-

rately represents and correlates to the governing equations intended to be solved and hence

establish credibility for the modeling effort. All verification examples involve only simple

geometries and boundary conditions but are representative of verifying at least one aspect

of the model implementation of the coupling mechanisms. Reference (mostly theoretical)

solutions are attached to the current simulation outcomes.

We note that the mesoscale discrete model exhibits intrinsic randomness due to the random-

ized generation rules of material’s mesostructure. Hence, the generation of the material’s

mesostructure is repeated three times with the same parameters and the average results of

three generations for all the examples are used.
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5.1 Benchmark 1: Terzaghi’s 1D consolidation

The first numerical example is the classical one-dimension consolidation problem of Terzaghi

[52], in light of the Biot’s theory. A 0.5× 0.1× 0.1 m3 prism equivalent to infinite soil layer

of thickness L = 0.5 m on a rigid impervious ground, is loaded by a stress σz = t∗z on the

top surface at z = 0 under drained condition, the Dirichlet boundary conditions are p = 0

at z = 0 for the pore pressure, and uz = 0 at z = L, ux = uy = 0 at all lateral surfaces for

the displacement. According to [16], this loading case is also called mode 1. A schematic

diagram of the numerical example is shown in Fig. 7a. LDPM and FLM meshes generated

are shown in Fig. 8.

Figure 7: Two-way coupling verification 1: Terzaghi’s 1D consolidation, simulation settings:
a) loading by pressure, b) loading by traction.

In the absence of body force, σz is independent of z. The differential equation for uz (the

Navier equation) reads:

2G(1− ν)

1− 2ν

∂2uz
∂z2

− b∂p
∂z

= 0 (28)

where G = Ec/(2 + 2ν) is the macroscopic shear modulus of the drained soil, Ec = E0(2 +

3α)/(4+α) is the macroscopic drained elastic modulus, ν = (1−α)/(4+α) is the macroscopic

drained Poisson’s ratio, E0 is the mesoscopic normal modulus, α is the mesoscopic normal-
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Figure 8: The LDPM tessellation of the prism’s geometry for Terzaghi’s 1D consolidation:
a) LDPM mesh, b) FLM mesh.

to-shear coefficient, b is the Biot coefficient. According to Biot’s theory for the uniaxial

strain problems, the diffusion equation for the pore pressure is:

∂p

∂t
− c∂

2p

∂z2
= − Υ

GS

dσz
dt

(29)

where c is the diffusivity coefficient c = κ/S = [2κG(1− ν)(νu − ν)]/[b2(1− 2ν)2(1− νu)], κ

is the intrinsic permeability of the soil, c is also called generalized consolidation coefficient

or Terzaghi consolidation coefficient under 1D consolidation; Υ = b(1 − 2ν)/(2 − 2ν), S

represents a storage coefficient, S = (1− νu) (1 − 2ν)/[M(1 − ν) (1− 2νu)], M is the Biot

modulus, νu is the undrained Poisson’s ratio, νu = (3Ku − 2G)/[2(3Ku + G)], Ku stand for

the undrained bulk modulus and reads Ku = Mbb
2 +Ec/[3(1−2ν)], Mb is the Biot modulus.

The values of parameters used in this section are summarized in Tab. 1.

Since the stress on the boundary is a constant, the right hand side of Eq. (29) drops out to
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give a homogeneous diffusion equation:

∂p

∂t
− c∂

2p

∂z2
= 0 (30)

The two fields p(1) and u
(1)
z can be expressed in terms of the dimensionless coordinate χ = z/L

and the dimensionless time τ = ct/(4L2), where t is the real time. Solving Eq. (30) with the

above initial and boundary conditions yields:

p(1) =
Υt∗z
GS

[1− F1(χ, τ)] (31)

where

F1(χ, τ) = 1−
∞∑

m=1,3,···

4

mπ
sin
(mπχ

2

)
exp

(
−m2π2τ

)
(32)

The displacement u
(1)
z can be similarly expressed in terms of the dimensionless coordinate χ

and the dimensionless time τ as:

u(1)z =
t∗zL (1− 2νu)

2G (1− νu)
(1− χ) +

p∗L (νu − ν)

2G(1− ν) (1− νu)
F2(χ, τ) (33)

where

F2(χ, τ) =
∞∑

m=1,3,···

8

m2π2
cos
(mπχ

2

) [
1− exp

(
−m2π2τ

)]
(34)

Another loading case (mode 2) is that the surface at z = 0 is subjected to a fluid pressure

p∗, as shown in Fig. 7b. In this case, only the boundary conditions at z = 0 are different:

σz = 0 and p = p∗. The initial pore pressure field for mode 2 loading is everywhere zero.
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Figure 9: Terzhagi’s consolidation, loading by traction: a) fluid pressure versus dimensionless
coordinate χ = z/L at various times of simulation t = 1/16tsim, 1/8tsim, 1/4tsim, 1/2tsim, tsim,
and b) z displacement profiles versus dimensionless coordinate χ = z/L at tsim.

The solution of p(2) is thus given by:

p(2) = p∗F1(χ, τ) (35)

The pore pressure in the layer increases with time until it reaches the constant value p∗ at

τ =∞. The displacement field is again found by integrating (28):

u(2)z = −Υp∗L

G
F2(χ, τ) (36)

We observe that the surface displacement is zero at τ = 0, and gradually rebounds (instead

of consolidating) to the long-term value of u
(2)
z = −Υp∗L/G. The rebound is a consequence

of the dilation of the porous solid induced by an increase of the pore pressure.

At the instant of loading, the layer immediately consolidates to u∗ = p∗L(1− 2νu)/[2G(1−

νu)]. Two opposing processes then follows: one consolidates to the maximum value p∗L(νu−

ν)/[2G(1− ν)(1− νu)], and the other rebounds to the asymptotic value of −Υp∗L/G.

The solution of this problem is then obtained by superposition of the solutions of the two
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modes. For example, the surface displacement is given by the sum of (33) and (36). It can

be shown that the second process is always greater in magnitude than the first, but that

it is never able to overcome the initial settlement. Hence the layer ends up with a positive

settlement which is smaller than the initial one.

Figure 10: Terzhagi’s consolidation, loading by fluid pressure: a) dimensionless fluid
pressure p/p∗ versus dimensionless coordinate χ = z/L, and b) z displacement pro-
files uz versus dimensionless coordinate χ = z/L at various times of simulation t =
1/16tsim, 1/8tsim, 1/4tsim, 1/2tsim, tsim.

The two-way coupling simulation results of loading mode 1 and 2 are presented in Figs. 9

and 10, respectively. Dimensionless fluid pressure p/p∗, as well as z displacement profiles

uz versus dimensionless coordinate χ = z/L at different time instants t = 1/16tsim, 1/8tsim,

1/4tsim, 1/2tsim, and tsim. It turned out that numerical model results agree well with the

analytical solution, showing the validity of the two-way coupling framework on the simulation

of poroelasticity problems.
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Table 1: Input parameters for two-way coupling simulations of poroelasticity (1D Terzaghi’s
consolidation)

Description Symbol [unit] Value
Density of fluid ρf [kg/m3] 1.0E+03

Dynamic viscosity of fluid µf [Pa.s] 8.9E-04
Bulk modulus of fluid Kf [Pa] 2.15E+09
Intrinsic permeability κ0 [m2] 1.97E-20

Biot modulus Mb [Pa] 6.1728E+10
Biot coefficient b [-] 0.5

Reference pressure p0 [Pa] 0.0
Density of solid ρs [kg/m3] 2.46E+03

Mesoscopic normal modulus of solid E0 [Pa] 2.15E+10
Mesoscopic normal-to-shear coefficient of solid α [-] 0.3

Time scaling factor ktime [-] 17.28E+06
Total simulation time tsim [s] 5E-02

5.2 Benchmark 2: Radial expansion of a pressurized hollow cylin-

der

The injection of fluid into porous media is a problem of great interest in environmental

engineering, biomechanics, and petroleum engineering. This interest has led to the devel-

opment of analytical solutions for several idealized situations. One of the most commonly

used analytical solutions in this class is derived for the pressured hollow cylinder problem

in the plane strain setting [27, 43, 45]. Consider a homogeneous elastic half-space (idealized

as a thick hollow cylinder) subjected to a sudden continuous mass influx of pore fluid. The

geometry of the hollow cylinder can be described by a r−θ−z cylindrical coordinate system

with the inner surface at r = ri = 0.1 m, the outer surface at r = ro = 0.725 m, and

the thickness d = 0.1 m, as shown in Fig. 11. The generated LDPM and FLM meshes are

shown in Fig. 12. The values of parameters used in this section are summarized in Tab. 2.

The constant influx of pore fluid has the magnitude of pfi = 50 MPa. The porous elastic

solid near the fluid source (inner surface r = ri) will first deform in an undrained manner,

given that the fluid infiltration is too rapid to diffuse the pore fluid pressure. Over time, the
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diffusion of pore fluid leads to deformation further in the radial direction. Eventually, given

sufficient time, the poroelastic responses will transit from the undrained limit to the drained

limit where there is no alternation in pore pressure at the steady-state.

We first consider the pure diffusion of pore fluid pressure in the hollow cylinder. The initial

condition is a water-saturated material with mechanically free boundaries, zero fluid pressure

at the outer boundary r = ro, and a continuous fluid injection pfi into the borehole r = ri.

The analytical solution of the radial fluid pressure distribution at steady-state reads [27]:

pf = pfi
log ro

r

log ro
ri

(37)

A typical example of results at steady-state is shown in Fig. 13. The final pressure profile

fits almost precisely the analytical solution.

Figure 11: Two-way coupling verification 2: radial expansion of a pressurized hollow cylinder,
simulation settings adopted from [27].

Apart from the flow analysis, we then move to the mechanical part of the pressurized hol-

low cylinder problem. Poroelastic radial expansion in the hollow cylinder due to the fluid
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Figure 12: The LDPM tessellation of the hollow cylinder’s geometry for the poroelastic radial
expansion: a) LDPM mesh, b) FLM mesh.

Figure 13: Radial fluid pressure distribution in a pressurized hollow cylinder at steady-state

injection, can be analytically resolved, the dimensionless radial displacement is given by [27]:

ū = −bp̄fi
1− ν2

2

[
r̄2o

r̄2o − 1

(
1 + ν

1− ν
1

r̄
+ r

)
+ r

1
1+ν
− ln r̄

ln r̄o

]
−(1−b)p̄fi

r̄2o
r̄2o − 1

(
1 + ν

r
+
r̄(1− ν)

r̄2o

)
(38)

where ū = u/ri, r̄ = r/ri, r̄o = ro/ri, p̄f = pf/Ec, p̄fi = pfi/Ec, Ec = (2 + 3α)/(4 + α)E0,

ν = (1−α)/(4+α). It should be noted that since we want to model the poroelastic behavior

of the cylinder only caused by the fluid pressure, the presence of boundary flow in this
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Table 2: Input parameters for two-way coupling simulations of poroelasticity (radial expan-
sion of a pressurized hollow cylinder)

Description Symbol [unit] Value
Density of fluid ρf [kg/m3] 1.0E+03

Dynamic viscosity of fluid µf [Pa.s] 8.9E-04
Bulk modulus of fluid Kf [Pa] 2.15E+09
Intrinsic permeability κ0 [m2] 1.97E-20

Biot modulus Mb [Pa] 6.1728E+10
Biot coefficient b [-] 0/0.5/1.0

Reference pressure p0 [Pa] 0.0
Density of solid ρs [kg/m3] 2.46E+03

Mesoscopic normal modulus of solid E0 [Pa] 4.648E+10
Mesoscopic normal-to-shear coefficient of solid α [-] 1.0/0.5455/0.16671

Time scaling factor ktime [-] 9.0E+06
Total simulation time tsim [s] 5E-02

fluid injection problem, should be modeled with both the Dirichlet boundary condition of

pore pressure pfi and mechanical traction boundary condition σr. The total stress at the

boundary should be equal to the fluid pore pressure, therefore, the mechanical (effective)

stress at the boundary is zero. The constant influx of pore pressure pfi = 50 MPa is applied

at the surface ri, and mechanical pressure with the same magnitude is applied to a very thin

layer of elastic skin (modeled with S3R shell elements in Abaqus) at ri. This elastic skin

layer is tied with the LDPM boundary nodes and has the elastic modulus Ec and Poisson’s

ratio ν. Skin layer thickness is selected as 0.0025 m after a sensitivity analysis.

The results of injection simulations for various macroscopic Poisson’s ratios ν = 0, 0.1, 0.2 are

shown in Fig. 14, Fig. 15, and Fig. 16, respectively. One may notice that the results generally

fit the analytical solution well for b = 0 and b = 0.5. For b = 1.0, since the mechanical

boundary conditions in the simulations and in the analytical solution are not identical, there

is a displacement deviation far from the injection point, where a free boundary leads to a

larger displacement and a fixed boundary naturally leads to a displacement that goes to

zero at the domain perimeter. Moreover, it is obvious that there is a comparatively large

discrepancy in the simulation and analytical results for larger Poisson’s ratios, this is possibly
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due to the intrinsic inconsistency in modeling the Poisson’s effects with discrete/lattice

models [6].

Figure 14: Radial expansion of a pressurized hollow cylinder, dimensionless radial dis-
placement distribution ū/p̄fi versus dimensionless radial coordinate r̄ for Biot coefficient
b = 0, 0.5, 1 and macroscopic Poisson’s ratio ν = 0

5.3 Benchmark 3: Hydraulic fracturing of hollow cylinder

In this section, we study the potential fracture formation caused by continuous fluid injection

into the hollow cylinder that was studied in the previous section. The geometry and boundary

conditions are the same as presented in Fig. 11. The values of parameters used in this

section are summarized in Tab. 3, note that we present results for low-permeability rocks

with κ0 =1.97E-20 m2. For all fracture analyses, ν = 0.1 was assumed. Fracture formation

is expected to affect the pore pressure diffusion process in the unfractured condition. Firstly,

crack openings obviously allow increased mechanical displacement. This can cause increased

expansion of the pressurized cylinder, which leads to a global pressure drop, and causes the

formation of open volumes available for inflow of fluid in the bulk material. Secondly, crack
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Figure 15: Radial expansion of a pressurized hollow cylinder, dimensionless radial dis-
placement distribution ū/p̄fi versus dimensionless radial coordinate r̄ for Biot coefficient
b = 0, 0.5, 1 and macroscopic Poisson’s ratio ν = 0.1

Figure 16: Radial expansion of a pressurized hollow cylinder, dimensionless radial dis-
placement distribution ū/p̄fi versus dimensionless radial coordinate r̄ for Biot coefficient
b = 0, 0.5, 1 and macroscopic Poisson’s ratio ν = 0.2
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Table 3: Input relevant parameters for two-way coupling simulations of hydraulic fracturing
of a pressurized hollow cylinder

Description Symbol [unit] Value
Density of fluid ρf [kg/m3] 1.0E+03

Dynamic viscosity of fluid µf [Pa.s] 8.9E-04
Bulk modulus of fluid Kf [Pa] 2.15E+09
Intrinsic permeability κ0 [m2] 1.97E-20

Biot modulus Mb [Pa] 6.1728E+10
Biot coefficient b [-] 0/0.5/1.0

Reference pressure p0 [Pa] 0.0
Density of solid ρs [kg/m3] 2.46E+03

Mesoscopic normal modulus of solid E0 [Pa] 4.648E+10
Mesoscopic normal-to-shear coefficient of solid α [-] 0.5455

Mesoscopic tensile strength of solid σt [Pa] 4.648E+06
Mesoscopic tensile characteristic length of solid lt [m] 0.2

Mesoscopic normal-to-shear strength ratio of solid rst [-] 4.1
Mesoscopic softening exponent of solid nt [-] 0.2

Mesoscopic compressive yielding stress of solid σc0 [Pa] 1E+08
Mesoscopic initial internal friction coefficient of solid µ0 [-] 0.2

Mesoscopic asymptotic internal friction coefficient of solid µ∞ [-] 0.0
Mesoscopic transitional normal stress of solid σN0 [Pa] 6E+08

Mesoscopic softening exponent of solid H0 [-] 0.2
Time scaling factor ktime [-] 9.0E+06

Total simulation time tsim [s] 5E-02

openings will increase the permeability of the corresponding flow volume and thus lead to

more efficient drainage of the injected fluid.

The simulation results until the divergence of the solver due to the fracturing are presented

in Fig. 17 in the form of normalized pressure p̄fi versus normalized radial displacement ū

at the inner boundary for b = 0, 0.5 and 1. Noticing that for the simulations with b = 0,

we completely disabled the coupling procedure: the corresponding results in this section

represent the uncoupled condition, no volumetric and cracking effects were involved. It can

be observed that, Biot’s coefficient has a strong influence on pressure–displacement curves

in Fig. 17. This can be interpreted as: with the coupling, the crack-induced augmentation

in permeability helps the faster drainage of pore pressure, and it reciprocally assists the
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further and crack growth in material, leading to the overall decrease in the peak load of

the material. Stronger the coupling (higher the Biot coefficient), lower the peak load the

material can resist.

Figure 17: M-LDPM simulations of hydraulic fracturing of a pressurized hollow cylinder,
normalized pressure p̄fi versus normalized radial displacement ū at the inner boundary at
r = ri. The circles indicate moments at which the crack patterns are shown in Figs. 18 and
19 for b = 0 and 1, respectively

The circles in Fig. 17 indicate the moments at which the crack patterns are presented in

Figs. 18 and 19 for b = 0 and b = 1, respectively. From Figs. 18 and 19, the crack patterns

change with Biot coefficient obviously: there is more diffused microcracking appearing at

the critical pressure around the central hole for low Biot coefficients. This is due to different

pressure magnitudes sustained by models with different Biot coefficients. If one studies the

cracking at the same pressure level, the situation is actually the opposite: the larger Biot

coefficients give more diffused cracking because the fluid pressure reduces both radial and

circumferential compressive stresses in the solid. Since it further helps to open the cracks,

the critical pressure for larger Biot coefficients is substantially lower.

The pore pressure contours corresponding to crack patterns in Figs. 18 and 19 for b = 0
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Figure 18: Crack patterns (crack opening contours) for uncoupled condition (b = 0) at three
moments shown in Fig. 17.

Figure 19: Crack patterns (crack opening contours) for b = 1.0 at three moments shown in
Fig. 17.

and b = 1 are shown in Figs. 20 and 21, respectively.

Figure 20: Pore pressure contours for uncoupled condition (b = 0) at three moments shown
in Fig. 17.
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Figure 21: Pore pressure contours for b = 1.0 at three moments shown in Fig. 17.

6 Conclusions

This study introduces a comprehensive Multiphysics-Lattice Discrete Particle Model (M-

LDPM) framework, specifically formulated for addressing coupled-fracture-poroflow prob-

lems in saturated environments. The framework uniquely integrates dual lattice systems:

the LDPM tessellation for discrete particle interactions and the Flow Lattice Element (FLE)

network for fluid flow simulations. Within this setting, the LDPM governing equations are

meticulously adapted to incorporate the effects of fluid pore pressure, while the FLM govern-

ing equations for pore pressure flow are derived from mass conservation laws involving both

uncracked and cracked volumes. The numerical implementation of the M-LDPM framework

is realized through the utilization of Abaqus user element subroutines. A crucial component

of the study is the data communication between different solvers facilitated by the Interpro-

cess Communication (IPC), ensuring seamless data exchange and integration of the coupled

systems. The framework’s technical specifics, and implementation details are thoroughly dis-

cussed. Validation of the M-LDPM framework is performed through comparative analyses

with analytical solutions of classical poromechanics benchmarks, demonstrating the frame-

work’s ability to accurately simulate both one-way and two-way coupling mechanisms with

high fidelity. Notably, the M-LDPM results agree exceptionally well with analytical solutions

across varying Biot’s coefficients and Poisson’s ratios for poroelasticity problems. Further-

more, the framework successfully captures the hydraulic fracturing phenomenon, highlighting
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the interplay between crack propagation and fluid flow, and underscoring the impact of cou-

pling strength on the material’s load-bearing capacity. Overall, this study establishes the

M-LDPM framework as a robust and accurate tool for multiphysics simulations, offering

valuable insights and a reliable methodology for exploring complex interactions in saturated

poroflow environments.
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