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Abstract

This paper presents a novel derivation for the governing equations of geometrically curved and

twisted three-dimensional Timoshenko beams. The kinematic model of the beam was derived

rigorously by adopting a parametric description of the axis of the beam, using the local Frenet-

Serret reference system, and introducing the constraint of the beam cross-section planarity into

the classical, first-order strain versus displacement relations for Cauchy’s continua. The resulting

beam kinematic model includes a multiplicative term consisting of the inverse of the Jacobian of

the beam axis curve. This term is not included in classical beam formulations available in the

literature; its contribution vanishes exactly for straight beams and is negligible only for curved and

twisted beams with slender geometry. Furthermore, to simplify the description of complex beam

geometries, the governing equations were derived with reference to a generic position of the beam

axis within the beam cross-section. Finally, this study pursued the numerical implementation of

the curved beam formulation within the conceptual framework of isogeometric analysis, which

allows the exact description of the beam geometry. This avoids stress locking issues and the

corresponding convergence problems encountered when classical straight beam finite elements

are used to discretize the geometry of curved and twisted beams. Finally, the paper presents

the solution of several numerical examples to demonstrate the accuracy and effectiveness of the

proposed theoretical formulation and numerical implementation.

Keywords: Curved beam, Timoshenko beam theory, Isogeometric analysis, Non-uniform rational

B-spline (NURBS), Finite element analysis
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1. Introduction1

Curved and twisted beams are commonly used in many applications in both civil, mechanical,2

and aerospace engineering due to their aesthetics and unique load-bearing properties. Tall buildings3

with curved and twisted columns have been designed and constructed in many parts of the world4

in recent years [1, 2, 3]. This type of columns not only leads to stunning building façades but5

they are also efficient in resisting both gravity and lateral loads. In contrast straight columns are6

in most cases designed to only resist gravity loads. Wind turbine blades and helicopter blades7

which are commonly found in the energy industry and aerospace engineering can be also modeled8

as beam-like structures [4, 5, 6]. Straight beam models have been used in the past in many of the9

dynamic and stability analyses of blades. However, the continuous effort on design optimization of10

the aerodynamic and structural performances of blades makes the beam geometry more complex,11

hence, analytical methods for curved and twisted beams have become increasingly prevalent.12

Geometrically curved and twisted smart beams which can sense and respond to stimuli also gained13

attention recently [7, 8]. The need for analytical capabilities for smart beams with curved and14

twisted geometry has inspired many studies, including piezoelectric and multiphysical behavior of15

smart beams [8, 9].16

Analysis methods for beams with increasing geometric complexities have been extensively17

studied by several authors in the past. Reissner [10] presented a variational analysis of small18

deformations of pretwisted elastic beams. Sandhu et al. [11] and Crisfield [12] developed co-19

rotation formulations for a curved and twisted beam element. Simo and Vu-Quoc [13] developed a20

geometrically exact beam model including shear and torsion warping deformations. The limitation21

of all the published formulations is that the kinematic model that relates the strains at one point of22

a beam cross-section with the beam axis elastic deformation and elastic curvature is assumed, and23

only valid for slender geometries, as opposed to rigorously derived from the continuum definition24

of strains. In addition, these formulations assume the axis of the beam to coincide with the centroid25
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of the cross-section and the local system of reference to be the principal axes of inertia. This is26

convenient for analytical hand calculations but it is instead cumbersome in computational analysis27

because the cross-section geometrical properties need to be calculated before defining the beam28

axis. This is not convenient in complex cases.29

The classical finite element formulation of beam theories uses straight beam elements, in30

which the axial behavior is decoupled from the transverse behavior. However, by using straight31

finite elements to approximate a curved beam, locking issues arise from the interplay of shear32

and membrane behaviors. This leads to a spurious stiffer response and an overestimation of shear33

stresses. The fundamental underlying issue is that the axial and transverse behaviors are not34

decoupled in the actual curved beam [14, 15, 16, 17]. A solution to this issue is to exactly describe35

the beam geometry via isogeometric analysis (IGA).36

Starting from the pioneering work of several researchers, e.g. Kagan et al. [18], Rogers [19],37

Hughes et al. [20], Isogeometric analysis (IGA) uses Non-Uniform Rational B-Splines (NURBS)38

basis functions to represent both the geometry and the field variables. Among the studies of IGA in39

structural mechanics, shell element and rod element formulations are frequently discussed. These40

include the work of Kiendl et al. [21], Benson et al. [22], Echter et al. [23], Auricchio et al. [24],41

Hu et al. [25], and Weeger et al. [16]. The structural analysis of beams, especially those with42

complex geometries can be accurately performed with the help of IGA, while the computational43

cost is significantly reduced compared to IGA with solid elements. The isogeometric beam element44

formulation of curved beams has been presented for both two-dimensional and three-dimensional45

cases and for both Euler-Bernoulli beam and Timoshenko beam in [15, 26, 27]. Locking issues46

as well as the locking free formulations of curved beams are also discussed in the literature and47

can be found in [14, 28, 29]. Nonlinear analysis of isogeometric curved beams gain more attention48

nowadays and are discussed in [30, 31], among others.49

2. Generalized Beam Formulation50

The underlying assumptions for the new beam formulation are the same as those made in51

classical Timoshenko beam theory: 1) the beam axis is orthogonal to the beam cross-sections52

before the deformation; 2) the cross-sections remain planar and preserve their shape and size53
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during deformation; and 3) displacements and rotations are small compared to the beam size (first-54

order theory). The warping effects of the section planes are neglected in this work. The authors55

recognize that warping effects might be important particularly for open thin-walled cross-sections,56

but they leave this additional complexity to future work.57

2.1. Geometry58

The geometry of a curved and twisted beam can be represented by the mathematical description59

of the beam axis and its cross-sections. The generic position, r(B), of a point on the beam axis can60

be expressed as a function of the arc-length B, where B ∈ [0, !] → R
3 and ! denotes the initial61

length of the curve.62

The vector r(B) allows calculating the Frenet-Serret local basis as63

t(B) = 3r(B)/3B
‖3r(B)/3B‖ ; n(B) = 32r(B)/3B2

‖32r(B)/3B2‖
; b(B) = t × n (1)

where t(B) is the unit vector tangent to the beam axis and orthogonal to the cross-section; n(B)64

is the normal unit vector; and b(B) is the binormal unit vector. These mutually orthogonal unit65

vectors form a local orthonormal basis Q(B) = {t, n, b} ∈ R3×3, which is also assumed to provide66

the orientation of the cross-section. At any given location of the beam axis, the cross-section is67

identical in the local system of reference.68

The position of any generic point % on a given cross-section centered at r(B) is calculated as69

x(B, ?=, ?1) = r(B) + p = r(B) + ?=n + ?1b. The out-of-plane component of p is zero, ?C = 0,70

because the cross-section is orthogonal to the beam axis in the undeformed configuration (Fig. 1).71

Finally, by using the Frenet-Serret formula [32], the derivatives of t, n, b can be obtained as72



3t
3B

3n
3B

3b
3B



=



0 ^ 0

−^ 0 g

0 −g 0





t

n

b



(2)

where ^(B) = ‖32r(B)/3B2‖ is the curvature and g(B) = 3n(B)/3B · b is the torsion of the curve.73
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2.2. Kinematics74

According to the beam assumptions, the displacement of a point at a generic cross-section can75

be calculated as u = u0 + ) × p, where u0(B) = [D0C , D0=, D01]T is the cross-section translation,76

) (B) = [\C , \=, \1]T is the cross-section rotation with reference to point $ corresponding to the77

intersection between the axis and the cross-section (Fig. 1). Point$ is any point in the cross-section78

and it does not need to be the cross-section centroid.79

The displacement gradient in the global reference system can be calculated as ∇Xu = ∇tu · J−1,80

where ∇tu is the displacement gradient in the local system of reference and J is the Jacobian of the81

local to global transformation. According to Strang [33], one has82

J−1
=

1

�



tT

�nT + g?1t
T

�bT − g?=t
T



(3)

where � = 1 − ^?=. By virtue of Eq. 3, the small strain tensor in the global system of reference83

reads84

& =
1

2

(
∇Xu + ∇XuT

)

=
1

2�
[2 (� − \1� + \=�) t ⊗ t + (� − \C� − \1�) n ⊗ t + (� + \C� + \=�) b ⊗ t

+ (� − \C� − \1�) t ⊗ n + (� + \C� + \=�) t ⊗ b]

(4)

where � =

(
3D0C

3?C
− ^D0=

)
+
(
^\C + 3\=

3?C

)
?1 − 3\1

3?C
?=, � =

(
^D0C + 3D0=

3?C
− gD01

)
−
(
3\C
3?C

− ^\=

)
?1 −85

g\C ?= − ^\1?=, � =

(
gD0= + 3D01

3?C

)
+ 3\C

3?C
?= − g\C ?1, � = g?1, and � = −g?=.86

Finally, the components of the strain tensor in the local system of reference can be calculated87

as88

YCC = tT · & · t =
1

�

[(
3D0C

3?C
− ^D0=

)
−
(
g\= +

3\1

3?C

)
?= +

(
^\C +

3\=

3?C
− g\1

)
?1

]
(5)
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Figure 1: Geometry and kinematics of a generic point % on a curved and twisted beam

WC= = nT · & · t + tT · & · n =
1

�

[(
^D0C +

3D0=

3?C
− gD01

)
− \1 −

(
3\C

3?C
− ^\=

)
?1

]
(6)

WC1 = bT · & · t + tT · & · b =
1

�

[(
gD0= +

3D01

3?C

)
+ \= +

(
3\C

3?C
− ^\=

)
?=

]
(7)

and Y== = nT · & · n = 0, Y11 = bT · & · b = 0, W=1 = bT · & · n + nT · & · b = 0.89

The strain tensor in the local system of reference can be then contracted in a 3 × 1 vector with90

non-zero components as91

9 =
1

�
(90 + 6 × p) (8)

where 90 = 3u0/3B − ) × t is the generalized strain vector and 6 is the beam torsional/flexural92

curvature vector. Note that the derivation of Eq. 8 used the condition 3?C = 3B.93

Equation 8 differs from the strain definition in classical Timoshenko beam formulations, which94

do not have the multiplier term 1/� = 1/(1 − ^?=).95

One has � = 1 for a straight beam (^ = 0) and � ≈ 1 if ^ℎ ≪ 1, where ℎ is the characteristic96

size of the cross-section. However, the effect of � on the local strains cannot be neglected for large97

values of ^ℎ, which occurs in the case of stocky geometries. The definition of ^ℎ as the curviness98

of the beam was first introduced by Borkovic et al. [34]. Equation 8 leads to cross-sectional strain99
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profiles that are nonlinear. From a physical point of view, this is due to the fact that material fibers100

away from the geometrical center of curvature are longer than materials fibers closer to the radius101

of curvature in their undeformed configuration. For a circular beam of radius ' with a rectangular102

cross-section of depth ℎ, the error in the strain calculation without the curvature effect is 50ℎ/'103

%, that is, for example, 5% for ℎ/' = 0.1 and 50% for ℎ/' = 1.104

2.3. Equilibrium105

The equilibrium of a geometrically curved and twisted beam can be derived from the principle106

of virtual work. The variation of the internal work can be calculated as follows107

X,int =

∫

+

(
fCCXYCC + gC=XWC= + gC1XWC1

)
3+

=

∫

+

(
fCCXYCC + gC=XWC= + gC1XWC1

)
�3?C3?=3?1

=

∫

;

∫

�

(
fCCXYCC + gC=XWC= + gC1XWC1

)
�3�3B

=

∫

;

∫

�

{
fCC

[(
3XD0C

3B
− ^XD0=

)
−
(
3X\1

3B
+ gX\=

)
?= +

(
^X\C +

3X\=

3B
− gX\1

)
?1

]

+gC=
[(
^XD0C +

3XD0=

3B
− gXD01 − X\1

)
−
(
3X\C

3B
− ^X\=

)
?1

]

+gC1
[(
gXD0= +

3XD01

3B
+ X\=

)
+
(
3X\C

3B
− ^X\=

)
?=

]}
3�3B

(9)

One can then introduce the following definitions of stress resultants108

# =

∫

�

fCC3� &= =

∫

�

gC=3� &1 =

∫

�

gC13�

"C =

∫

�

(
gC1?= − gC=?1

)
3� "= =

∫

�

fCC ?13� "1 = −
∫

�

fCC ?=3�

(10)
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By substituting the stress resultants into Eq. (9), and by integrating by parts, the variation of the109

internal work becomes110

X,int =

(
#XD0C +&=XD0= +&1XD01 + "CX\C + "=X\= + "1X\1

)�����
Γℎ

+
∫

;

[(
− 3#

3B
+ ^&=

)
XD0C +

(
− ^# − 3&=

3B
+ g&1

)
XD0=

+
(
− g&# − 3&1

3B

)
XD01 +

(
− 3"C

3B
+ ^"=

)
X\C

+
(
− ^"C −

3"=

3B
+ g"1 +&1

)
X\= +

(
− g"= −

3"1

3B
−&=

)
X\1

]
3B

(11)

where Γℎ is the boundary with prescribed tractions. Since, the variation of the external work111

has the form X,ext =
∫
;

(
@CXD0C + @=XD0= + @1XD01 + <CX\C + <=X\= + <1X\1

)
3B, the equilibrium112

equations at any given cross-section can be written as follows113

(
3#

3B
− ^&=

)
+ @C = 0

(
^# + 3&=

3B
− g&1

)
+ @= = 0

(
g&# + 3&1

3B

)
+ @1 = 0

(
3"C

3B
− ^"=

)
+ <C = 0

(
^"C +

3"=

3B
− g"1

)
−&1 + <= = 0

(
g"= +

3"1

3B

)
+&= + <1 = 0

(12)

2.4. Elastic Behavior114

In the linear elastic regime, one can write the stresses as fCC = �YCC , gC= = �WC=, and gC1 = �WC1,115

where � is the elastic modulus, � = �/(2 + 2a) is the elastic shear modulus, and a is Poisson’s116

ratio.117

In terms of stress resultants versus generalized strains and curvatures, the elastic behavior118

can be written as f = E(. f = [#,&=, &1, "C , "=, "1]T is the stress resultant vector, ( =119
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[
Y0CC , W0C=, W0C1, jC , j=, j1

]T
is the generalized strain vector, E is the sectional stiffness matrix,120

which reads121

E =



��∗ 0 0 0 �(∗= −�(∗
1

0 ��∗
= 0 −�(∗= 0 0

0 0 ��∗
1

�(∗
1

0 0

0 −�(∗= �(∗
1

��∗CC 0 0

�(∗= 0 0 0 ��∗== −��∗
=1

−�(∗
1

0 0 0 −��∗
=1

��∗
11



(13)

where122

�∗
=

∫

�

1

1 − ^?=
3� �∗

= = U=�
∗ �∗

1 = U1�
∗

(∗= =

∫

�

?1

1 − ^?=
3� (∗1 =

∫

�

?=

1 − ^?=
3� �∗CC =

∫

�

?2
= + ?2

1

1 − ^?=
3�

�∗== =

∫

�

?2
1

1 − ^?=
3� �∗11 =

∫

�

?2
=

1 − ^?=
3� �∗=1 =

∫

�

?=?1

1 − ^?=
3�

(14)

The coefficients U= and U1 are the shear correction factors in the n and b local directions [35]. They123

take into account that the actual shear stress distribution cannot be uniform over the cross-section124

and they depend on the shape of the cross-sections. The definitions in Eq. 14 are generalized125

versions of the cross-sectional properties (area, first and second order area moments), which take126

into account, again, the effect of the local to global transformation via the term � = 1 − ^?=.127

Finally, the beam stiffness matrix in Eq. 14 is not diagonal. Indeed, the equivalent first order area128

moments (∗= and (∗
1

are not zero because the beam axis intersects the cross-section in a point that,129

in general, is not its centroid. In addition, the equivalent mixed moment of inertia �∗
=1

is non-zero130

because the two local axes n and b are not, in general, principal axes of inertia.131

3. Isogeometric Implementation132

Following Hughes et al. [20], this study employs NURBS (Non-uniform Rational B-spline) as133

shape functions to interpolate both the beam geometry and the unknown fields. This technique is134
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known in the literature as Isogeometric Analysis (IGA). The main advantage of IGA is the accurate135

and sometimes exact representation of the geometry: this is a critical aspect for the simulation of136

spatially curved and twisted beams. Furthermore, a unique advantage of IGA compared to the clas-137

sical Finite Element (FE) method is the possibility of global regularity refinement, which enables138

high-order interpolation of unknown fields without significantly increasing the computational cost139

[20, 36, 37].140

A NURBS basis function on the parametric domain Ω̂ =
[
b1, b<

]
⊂ R can be defined by141

specifying a knot vector with non-decreasing order Ξ = {b1, b2, · · · , b<}, an associated set of142

B-spline basis functions #
?

�
and a set of NURBS weights {F �}, where � is the �-th knot, = is the143

number of basis functions, ? is the polynomial order. In IGA, the relation < = = + ? + 1 always144

holds. The B-spline basis function #
?

�
can be constructed starting from ? = 0 with #0

�
(b) = 1, if145

b ∈ [b� , b�+1 [, otherwise #0
�
(b) = 0.146

For ? ≥ 1, it can be defined recursively using the Cox-de Boor formula147

#
?

�
(b) =




b−b�
b�+?−b� #�,?−1(b) + b�+?+1−b

b�+?+1−b�+1
#�+1,?−1(b) if b ∈

[
b� , b�+?+1 [

0 otherwise.
(15)

When ? = 0, #�,0(b) are piece-wise constant functions; when ? = 1, #�,0(b) are the same148

basis functions of classical constant-strain finite elements. B-spline basis functions are linearly149

independent, have a partition of unity property and their support is compact. However, they, in150

general, do not satisfy the Kronecker delta property [38].151

The NURBS basis function then can be written as152

'
?

�
(b) =

#�,? (b)F �∑=
�=1 #�,? (b)F�

(16)

where weights F � are selected depending upon the type of curve to be represented exactly. Note153

that when all weights F � are equal to 1, the NURBS basis function reduces to the B-spline basis154

function, which can be seen as a subset of the NURBS basis function.155

One then defines the non-zero entries in the knot vector � to span the parametric domain,156
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Ω̂ = [0, 1] if normalized. The element after spatial discretization in the parametric domain now157

can be defined as a span of the unique entries of the knot vector Ω̂4 =
[
b� , b�+1

]
(b� ≠ b�+1, � =158

? + 1, ? + 2, · · · , =B), where =B is the number of unique knots.159

Another domain that is commonly used for numerical quadrature is referred to as the parent160

domain Ω̃ = [−1, 1]. It is worth mentioning that the parent domain in IGA is always referred to as161

the parametric domain in conventional FE formulations, and the parametric domain used in IGA162

is absent in the FE context. The parametric domain is essentially an additional domain in IGA and163

hence an additional mapping is needed. Figure 2 illustrates the spatial mapping from the parent164

domain to the physical domain via the parametric domain. The mapping from the parent domain165

Ω̃ to the elemental parametric domain Ω̂4, >̂4 : Ω̃ → Ω̂4, and the mapping from the parametric166

domain Ω̂ to the physical domain Ω, > : Ω̂ → Ω are assumed to be sufficiently smooth and167

invertible [39].168

As already mentioned, considering a spatially curved beam in the physical domain Ω ⊂ R3,169

IGA requires a set of control points P� , the corresponding weights of the control points F � , a170

knot vector � =
[
b1, b2, · · · , b�+?+1

]
(� = 1, 2, · · · , =), the number of control points = and the171

polynomial order ?. This information is commonly found in most CAD software applications and172

packages and must be imported before the analysis.173

The geometry, displacements and rotations are interpolated by NURBS basis functions and the174

values at the control points. For the geometry, one has175

r(B) =
=∑

�=1

'
?

�
(B)P� (17)

Over each element domain Ω4 ∈ [B� , B�+1], displacements and rotations read176

uℎ (B) =
?+1∑

�=1

'
?

�
(B)u� = N4 (B)u4 (18)

177

)ℎ (B) =
?+1∑

�=1

'
?

�
(B)) � = N4 (B))4 (19)
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Figure 2: A schematic diagram of the mapping between domains for an IGA beam

From Eq.18 and Eq.19, one obtains178

(ℎ (B) =
?+1∑

�=1

B4
� (B)d� (20)

where d� = [uT
�
, )T

� ]T, and179

B4
� =



3'
?

�

3B
−^'?

�
0 0 0 0

^'
?

�

3'
?

�

3B
−g'?

�
0 0 −'?

�

0 g'
?

�

3'
?

�

3B
0 '

?

�
0

0 0 0
3'

?

�

3B
−^'?

�
0

0 0 0 ^'
?

�

3'
?

�

3B
−g'?

�

0 0 0 0 g'
?

�

3'
?

�

3B



(21)

It is worth noting that the smoothness condition for the classical Galerkin approach used in180

this study requires shape functions with only �0-continuity; this is typical of Timoshenko beam181

numerical implementations. However, the smoothness for the Frenet-Serret local basis requires182
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�2-continuity. Since the NURBS basis function '
?

�
(B) is � ?−: continuous, at least ? = 2 degree183

shape functions are needed in order to exactly capture the geometry of the beam.184

Finally, by using the weak form of the equilibrium equations, one can compute the element185

stiffness matrix and nodal load vectors as customarily done in Galerkin FE implementations186

[39, 27].187

4. Numerical Examples188

To verify the proposed beam formulation, numerical examples of 3D beams with various189

geometrical complexities are presented in this section. Three different geometries are included: 1.190

a curved cantilever arch, 2. a circular balcony, and 3. a helical rod. They all represent respective191

complexities in terms of geometry and boundary conditions. One additional numerical example of192

a curved cantilever arch with a cruciform cross-section is provided as well, in order to investigate193

the capability of using the new beam formulation for beam problems with irregular cross-sectional194

shapes.195

4.1. Curved Cantilever Arch196

The first example is a cantilever quarter circle arch subjected to an in-plane tip load. The197

geometry of the quarter circle arch axis can be categorized as an in-plane curve with a constant198

curvature ^ and zero torsion g = 0 along the arc-length. The quarter circle arch of curvature radius199

' has a rectangular cross-section with the dimensions of ℎ×F. The curved arch is clamped at one200

end and loaded at the other end with a concentrated force � pointing toward its curvature center201

(see Fig. 3a).202

A representative convergence study for the classical beam formulation (1/� = 1) with a203

slenderness ratio ℎ/' = 0.1 is firstly performed, in order to investigate the convergence properties204

of IGA-beam simulations using both the standard ℎ- (mesh size) and ?- (degree of basis functions)205

refinements. The !2-norm relative errors of nodal displacements D1, D2, and nodal rotation \3206

vs. the mesh size with quadratic and cubic NURBS basis functions are reported in Fig. 3b, c, d,207

respectively. The !2-norm relative error can be calculated as: ‖� − �ℎ‖/‖�‖, where �ℎ denotes208

the numerical values, � denotes the reference values reported in Cazzani et al. [15]. It can be209
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observed that higher degrees of the basis functions lead to higher convergence rates, as well as210

more accurate results.211

The influence of the multiplier term 1/� in the new beam formulation is then investigated by212

comparing the beam simulations of the new beam formulation with those of the classical beam213

formulation (1/� = 1) and those of 3D solid finite elements. Beams with slenderness ratios ℎ/'214

ranging from 0.1 to 1.0 were simulated. Figure 3e and f report the normalized, dimensionless215

G1-displacements D�
1
= D�

1,ori
· [�Fℎ3/(�'3)] and G2-displacements D�

2
= D�

2,ori
· [�Fℎ3/(�'3)] at216

point A on the edge center of the tip cross-section (see Fig. 3a), respectively, where D�
1,ori

, D�
2,ori

, � ,217

F, ℎ, �, and ' are the original G1-displacement, G2-displacement at point A, beam elastic modulus,218

cross-sectional width, height, magnitude of applied load, and curvature radius, respectively. The219

new beam formulation and classical beam formulation results were obtained with 16 IGA beam220

elements with cubic NURBS basis functions; the 3D finite element solution was calculated by221

using 1024 × 16 × 16 solid finite elements. It is worth noting that the results of the new beam222

formulation are relatively close to the reference 3D FE results, while the classical beam formulation223

with 1/� = 1 is inadequate to accurately simulate the beam deflections. This is particularly true224

for slenderness ratios ℎ/' > 0.5 (thick beams).225

The difference between the beam solutions and the 3D finite element solution is due to two226

limitations of the Timoshenko beam theory: 1. the higher the slenderness ratio is, the harder the227

shape of the beam sections can be approximated by a plane and, the planar integration used in228

sectional stress calculations are not accurate anymore; 2. the change in reference length in strain229

calculations is more significant for higher slenderness ratio cases. While the new beam formulation230

adopts the multiplier term 1/� to resolve the second issue, the classical beam formulation basically231

has no mitigation for any of the issues mentioned above.232

Another set of simulations was conducted for beams with the same geometry but with arbitrary233

positions of the beam axis. Figure 4a, b, and c show curved arches that are simulated with the234

beam axis located at the center, top, and bottom of the cross-section, respectively, a diagram of235

all the locations of the beam axis considered in this comparison is shown in Fig. 4d, the local236

coordinates of the generic point (denoted "X" in Fig. 4d) are: [−0.25ℎ, 0.25F]. It is worth noting237

that the beam problem to be solved for the cantilever arch is not exactly the same anymore if238
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Figure 3: Cantilever circular arch example: (a) geometry and boundary conditions, (b)(c)(d) convergence studies of the

relative !2-norm error in nodal G1-displacement D1, G2-displacement D2, and G3-rotation \3 for ℎ/' = 0.1, respectively,

(e) and (f) comparisons of normalized G1-displacement D�
1

and G2-displacement D�
2

at a generic point A, using the

generalized beam formulation (1/� ≠ 1), the classical beam formulation (1/� = 1), and the reference 3D solid FEM

values
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the position of the beam axis is changed: as the concentrated force F will always apply on the239

beam axis, the arbitrarily chosen beam axis will lead to an eccentricity d of the concentrated240

force F, which will consequently result in an extra bending moment M = d × F at the loaded241

end of the beam, to mitigate such an eccentricity, a negative compensatory-bending moment −M242

is applied, in order to secure those beam problems with arbitrarily chosen positions of the beam243

axis are essentially identical. Figure 4e and f report the normalized tip G1-displacement D
tip

1
and244

tip G2-displacement D
tip

2
v.s. slenderness ratio with different positions of the beam axis. Similar245

to the results shown in Fig. 3e and f, the dimensionless, normalized displacements are calculated246

as: D
tip

1
= D

tip

1,ori
· [�Fℎ3/(�'3)] and D

tip

2
= D

tip

2,ori
· [�Fℎ3/(�'3)], where D

tip

1,ori
and D

tip

2,ori
are the247

original G1-displacement and G2-displacement at the centroid at the free-tip section, respectively.248

The overlapped results of variously positioned beam axes in Fig. 4e and f show that the new beam249

formulation can account for the effect of changing positions (and hence changing reference length250

in strain calculations) of the beam axis on the beam computations, which can be considered as one251

of the advantages of the new beam formulation over the classical beam formulation as the location252

of the beam axis can be arbitrarily selected within the cross-section.253

4.2. Circular Balcony254

The second example is a semi-circular balcony subjected to an out-of-plane distributed load.255

The geometry of the circular balcony can be described by the expression G1(B) = ' cos (B/'),256

G2(B) = ' sin (B/'), where ' is the radius of the curvature, B is the arc-length. The dimensions257

of the circular balcony are selected to be consistent with the dimensions ' = 3 m, ℎ = 0.3 m, and258

F = 0.3 m of a numerical example in Zhang et al. [27]. The semi-circular structure was clamped259

at both ends; a uniformly distributed load @ = 5 kN/m was applied in the negative G2 direction260

(Fig. 5a). After a convergence study, a mesh of 32 elements with the cubic basis functions was261

selected. The calculated local displacement D1, the local rotation about C-axis \C , and the local262

rotation about =-axis \= versus the arch length B with the aforementioned mesh are compared with263

the values in Zhang et al. [27] and are reported in Fig. 5b,c and d, respectively. Because the264

slenderness ratio of the curved arch (ℎ/' = 0.1 for this example) is small, the differences between265

the results calculated by the new beam formulation and those calculated by the classical beam266
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Figure 4: Arbitrarily positioned beam axis for the circular cantilever arch: (a)(b)(c) diagrams of beam with axis located

at the center, top, and bottom of the cross-section, respectively, (d) locations of the beam axis on the beam section, (e)

and (f) normalized tip G1-displacement D
tip

1
and tip G2-displacement D

tip

2
v.s. slenderness ratio with various locations

of the beam axis
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formulation are negligible. An excellent overall agreement shows that the current formulation has267

high accuracy with a relatively few number of elements and low degrees of the basis functions.

Figure 5: Circular balcony example: (a) geometries and boundary conditions, (b)(c)(d) local displacement D1, local

rotation about C-axis \C , and local rotation about =-axis \= versus the arch length B of the beam axis by comparing with

the results in [27], respectively

268

4.3. Helical Rod269

The next example is a helical rod subjected to a tip load. The helical rod has the expression270

G1(B) = 0 cos (B/2), G2(B) = 0 sin (B/2), G3(B) = 1B/2, where 0 = 2, 1 = 3/2c and 2 =
√
02 + 12 =271

2.06, the beam axis has a curvature radius of 2 m, a total height of � = 3 m, and can be categorized272

as a 3D structure with a constant curvature ^ and torsion g along the arc-length. The cross-section273

is circular with a diameter 3, which is constant along the arc-length. Varying diameters 3 were274

selected to make the slenderness ratios equal to 3/� = 0.33, 0.1, 0.05, 0.033, 0.01, respectively.275

The curved beam is fixed at one end and loaded at the other end with concentrated force � = 10276

kN in the negative G2 direction (Fig. 6a). The global vertical displacement D2 and rotation about277

G2-axis \2 versus the arch length B of the beam axis for slenderness ratio 3/� = 0.05 are as shown278
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in Fig. 6b and c, respectively. The comparison of the tip displacement and rotation for the beams279

with arbitrarily positioned beam axis is shown in Fig. 6d, e, and f. Figure 6d shows the positions280

of the beam axis in this comparison, the local n − b coordinates of the generic point (denoted "X"281

in Fig. 6d) is: [0.253, 0.253].282

Figure 6e and f report the normalized, dimensionless tip displacementD
tip

2
= D

tip

2,ori
·[�34/(��3)]283

and rotation \
tip

2
= \

tip

2,ori
· [�34/(��2)] v.s. slenderness ratio with various beam axes, where D

tip

2,ori
,284

\
tip

2,ori
, � , 3, �, and � are the original G2-displacement, rotation around G2-axis at the centroid at285

the free-tip section, beam elastic modulus, cross-sectional diameter, magnitude of applied load,286

and total height of the beam, respectively. Again, the overlapping results of the helical rod show287

that the new beam formulation can accurately simulate beam deflections with arbitrarily selected288

positions of the beam axis.

Figure 6: Helical rod example: (a) geometries and boundary conditions, (b) and (c) global vertical displacement D2

and rotation about G2-axis \2 versus the arch length B (3/� = 0.05), (d) diagram of the different locations of the beam

axis on the circular cross-section, (e) and (f) normalized tip G2-displacement D
tip

2
and tip rotation around G2-axis \

tip

2

v.s. slenderness ratio with various locations of the beam axis

289
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4.4. Beams with Arbitrarily Positioned Beam Axis and Irregular Cross-sections290

One additional numerical example is provided to demonstrate the possibility of simulating291

beams with irregular cross-sections with the generalized beam formulation. A cantilever quarter292

circle arch with a "tri-webs" cross-section subjected to an in-plane tip load was simulated (see293

Fig. 7a). A clamped-free boundary condition was used, and a tip concentrated force � acted at the294

free end toward the curvature center. The shape of the cross-section can be approximately seen as295

an assembly of three rectangles with dimensions F8 × ℎ8 (8 = 1, 2, 3), the beam axis passes through296

the mid-point of the bottom edge of each rectangle, each rectangle rotates counter-clockwise around297

the beam axis with angle \8 within the local coordinate system n − b, the overlapped area can be298

neglected if one assumes F8 ≪ ℎ8, as shown in Fig. 7b. The sectional properties of the "tri-webs"299

cross-section can be calculated by taking the superposition of those properties of each web, i.e.300

�∗ =
∑3

8=1 �
∗
8 , (

∗
=

∑3
8=1 (

∗
=8, �

∗
11

∑3
8=1 �

∗
118

, etc. The shear coefficient has no general estimation for301

the irregular cross-sections, but it can always be evaluated by the ratio of the average shear strain302

on a section to the shear strain at the shear center. After calculation, approximate shear coefficients303

U= = 0.4 and U1 = 0.35 are used.304

The beam dimensions in this numerical example are: radius of curvature ' = 5 m, web305

dimensions ℎ1 = 0.8, ℎ2 = 0.5, ℎ3 = 0.3 m, F1 = 0.08, F2 = 0.05, F3 = 0.03 m, rotation angles306

\1 = 1c/3, \2 = 7c/8, \3 = 13c/8. The material properties used are: elastic modulus � = 200307

GPa and Poisson’s ratio a = 0.3. The applied tip load was � = 10 kN. Because of the absence of the308

reference solutions, the results of the IGA-beam simulation with the finest mesh (1024 elements)309

and the highest degree of the basis functions (6th degree) are used as the reference solution. The310

initial and deformed shapes of the circular arch corresponding to the reference solution are shown311

in Fig. 7a, the deformation is multiplied with the scale factor 100. It can be observed that the312

in-plane load � leads to not only the in-plane bending of the beam, but also the out-of-plane313

bending and the torsion around the beam axis, this reflects the fully-coupled behaviors of the beam314

with an irregular cross-section. The displacement D2, rotation around G2-axis \2 along the arch315

length B of the beam axis are shown in Fig. 7c and d, respectively. With the reference solutions, the316

convergence studies of the !2-norm relative errors of nodal displacements D2, and nodal rotation317

\2 vs. the mesh size are reported in Fig. 7e and f.318
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Figure 7: Irregular cross-section example: (a) initial and deformed shapes of the quarter circle arch with an irregular

cross-section, (b) "tri-webs" cross-section, (c) and (d) displacement D2, rotation around G2-axis \2 v.s. the arch length

B with the 1024 beam elements and the 6th degree of the basis functions, respectively, (e) and (f) convergence studies

of relative !2-norm error in nodal displacements D2, and nodal rotations \2 toward results in (c) and (d), respectively
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5. Conclusion319

In this study, a new generalized Timoshenko beam formulation was developed to accurately320

capture the deformation of geometrically curved and twisted beams. The proposed beam formula-321

tion employs a parameterization of the beam axis with its arc-length and a local system of reference322

described by the Frenet-Serret basis. Furthermore, a beam kinematic model, more accurate than323

the ones currently available in the literature, is derived rigorously imposing the kinematic con-324

straints dictated by the Timoshenko beam assumptions. Compared to existing formulations, the325

derived kinematic model features the effect of the initial curvature of the beam via a multiplicative326

term and leads to a nonlinear distribution of strains over the cross-section. The resulting theory327

was implemented using isogeometric analysis and was used to solve four examples with various328

degrees of complexity.329

From the obtained results one may draw the following conclusions.330

1. The generalized Timoshenko beam formulation presented in this paper allows the seamless331

analysis of spatially curved and twisted beam geometry.332

2. The beam geometry can be directly imported and used from CAD software packages without333

the need of any preprocessing including precalculation of cross-section centroids and/or334

principal axis of inertia.335

3. The axis of the beam can intersect the cross-section at any generic point of the cross-section336

plane. This simplifies the analysis of beams with complex cross-sections.337

4. The IGA implementation of the proposed formulation leads to optimal convergence.338

5. The numerical results are free of any stress locking issue.339

6. The obtained results are more accurate than the ones obtained with classical Timoshenko340

beam for a wide range of slenderness ratios.341
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