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Introduction

• Wood, due to its low CO2 and energy content 

relative to structural properties, as well as the 

innovations in engineered wood products, is at a 

new high of interest in construction engineering.

• However, design and code approval of new wood 

products still rely on expensive, time-consuming 

broad-based laboratory testing.

Figure 1: Brocks Commons 

tallwood house [1]

[1] Credit: https://clean50.com/projects/acton-ostry-architects-fast-epp-brock-

commons-tallest-modern-timber-hi-rise
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Discrete modeling at finer scales: a powerful tool

• While many continuum-based, macroscale models have been successfully 

developed to represent the damage or failure of wood occurred at larger length 

scales, the discrete, finer scale modeling techniques, are also crucially important for 

capturing the intrinsic anisotropy and heterogeneity of wood.

Figure 2: Various length scales of wood
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Connector-Beam Lattice Model for Wood

Figure 3: a) 3D morphology of wood mesostructure, b) curved axes of beam lattices, c) cross-sections of beam 

lattices, d) schematic diagram of the connector element, and e) Voronoi-based CBL model for wood

• A 3D discrete Connector-Beam Lattice (CBL) model has been developed, for explicitly 

simulating many mechanical behaviors (e.g., fracture) of wood at the mesoscale.



Wood mesh generation
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• The morphological structure of wood is one of the key aspects of the CBL model, as 

it may strongly affect both the elastic and fracture properties.

• We developed a Voronoi diagrams-based geometric generation tool that generates 

3D meshes and models for wood.

3D curves 

rotation &

extrusion

2D Voronoi mesh 3D Wood mesh 

clipping &

trimming
connectivity 

reconstruction

Figure 4: Workflow of wood mesh generation



Wood mesh generation: annual rings
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• The formulation of the annual rings follows density models of annual rings (by now, 

Pernestål et al., 1995).

[2] Credit: Pernestål, K., B. Jonsson, and B. Larsson. "A simple model for density of annual 

rings." Wood Science and Technology 29.6 (1995): 441-449. 
[3] Credit: https://regentinstruments.com/assets/images_windendro/StraightPath_610.fw.png

Figure 5: Earlywood-latewood transition [2] Figure 6: Density model of annual rings [3]

Figure 7: Annual rings structure 

in wood mesh



Wood mesh generation: clipping & trimming 
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• The 2D Voronoi diagram is formed and extruded in the out-of-plane (longitudinal) 

direction. Then cells intersect with the bounding box are clipped & trimmed. 

Figure 8: Wood mesh generation for a notched sample: a) the clipping and trimming algorithm b) a wood 

notched test sample (By courtesy of Belalpour and Landis), c) the corresponding wood mesh

a) b) c)



Wood mesh generation: visualization
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• The data structure of wood mesh is reconstructed to have the connector-beam 

connectivities.

Figure 9: Visualization of a wood mesh: (a) connector-beam system, (b) volumetric rendering of connectors 

and beams, (c) point cloud of vertices (nodes)
now on Github as a Python 

package “RingsPy”



Isogeometric beam lattice
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• For the beam lattices, 3D curved Timoshenko beams with cruciform cross-sections 

are used.

𝑅
𝑅

𝑇
𝐿

𝑇

d)c)

Figure 10: a) Cross-sectional view of wood cells, b) a single wood fiber specimen made by fouced ion beam (FIB) milling, 

c) cross-sectional view of the virtual wood mesh, and d) 3D sketch of beam lattices (a and b are modified from [4])

𝑅

𝑇

𝑅

𝐿

𝑇

[4] Ref: Koddenberg, Tim, et al. "Three-dimensional imaging of xylem at cell wall level through 

near field nano holotomography." Scientific reports 11.1 (2021): 1-7. 
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Isogeometric beam lattice

Kinematics:       𝐮 = 𝐮0 + 𝜽 × 𝐩

• The formulation of the beam lattice was derived [5].

Compatibility:     𝝐 = ∇𝑋𝐮 + ∇𝑋𝐮
T /2 ∇𝑋𝐮 = ∇𝑡𝐮 ∙ 𝐉

−1

Equilibrium (through the principle of virtual work):

Non-zero components of 𝝐: 

𝜀𝑡𝑡 = 𝐭T ∙ 𝝐 ∙ 𝐭 𝛾𝑡𝑛 = 𝐧T ∙ 𝝐 ∙ 𝐭 + 𝐭T ∙ 𝝐 ∙ 𝐧 𝛾𝑡𝑏 = 𝐛T ∙ 𝝐 ∙ 𝐭 + 𝐭T ∙ 𝝐 ∙ 𝐛

𝛿𝑊int = ∫𝑉 𝜎𝑡𝑡𝛿𝜀𝑡𝑡 + 𝜏𝑡𝑛𝛿𝛾𝑡𝑛 + 𝜏𝑡𝑏𝛿𝛾𝑡𝑏 𝑑𝑉

𝛿𝑊ext = ∫𝑙 𝑞𝑡𝛿𝑢0𝑡 + 𝑞𝑛𝛿𝑢0𝑛 + 𝑞𝑏𝛿𝑢0𝑏 +𝑚𝑡𝛿𝜃𝑡 +𝑚𝑛𝛿𝜃𝑛 +𝑚𝑏𝛿𝜃𝑏 𝑑𝑠

Assumptions: (i) beam axis ⊥ section (ii) plane section (iii) small 𝐮 and 𝜽

Beam axis is represented by a parametric curve 𝐫 𝑠

The Frenet-Serret local system of reference:

The Frenet-Serret formula:

Curvature 𝜅: 

Torsion 𝜏: 

Jacobian from Cartesian 

system to curvilinear system 

𝑑𝑉 = 𝐽𝑑𝐴𝑑𝑠, 𝐽 is the determinant of 𝐉, 
𝐽 = 1 − 𝜅𝑝𝑛

𝐮0 – displacement at reference point 𝑂

𝜽 – rotation of the cross-section

𝐩 – position vector of point 𝑃 on the section

𝛿𝑊int = 𝛿𝑊ext ⟹

𝜏𝑀𝑛 +
𝑑𝑀𝑏

𝑑𝑠
+ 𝑄𝑛 +𝑚𝑏 = 0

𝜅𝑁 +
𝑑𝑄𝑛
𝑑𝑠

− 𝜏𝑄𝑏 + 𝑞𝑛 = 0

𝑑𝑁

𝑑𝑠
− 𝜅𝑄𝑛 + 𝑞𝑡 = 0

𝜏𝑄𝑁 +
𝑑𝑄𝑏
𝑑𝑠

+ 𝑞𝑏 = 0

𝑑𝑀𝑡

𝑑𝑠
− 𝜅𝑀𝑛 +𝑚𝑡 = 0

𝜅𝑀𝑡 +
𝑑𝑀𝑛

𝑑𝑠
− 𝜏𝑀𝑏 − 𝑄𝑏 +𝑚𝑛 = 0

Sectional stress resultants 𝑁 = ∫𝐴𝜎𝑡𝑡𝑑𝐴, 𝑄𝑛 = ∫𝐴𝜏𝑡𝑛𝑑𝐴,…

Figure 11: Beam geometry and kinematics

[5] Ref: Yin, H., Lale, E., and Cusatis, G. "Generalized Formulation for the Behavior of 

Geometrically Curved and Twisted Three-Dimensional Timoshenko Beams and Its 

Isogeometric Analysis Implementation." ASME. J. Appl. Mech. July 2022; 89(7): 071003.



Isogeometric beam lattice: element verifications
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• Linear elastic behaviors of the beam element: static responses [5].

Figure 12: IGA beam verification, tip loaded curved beam with a cruciform cross-section: a) initial shape and the 

deformed shape in 3D, b) cruciform cross section of the beam, c) and d) displacement 𝑢2 and rotation 𝜃2 v.s. the arc-

length 𝑠, e) and f) convergence studies of displacement 𝑢2 and rotation 𝜃2

[5] Ref: Yin, H., Lale, E., and Cusatis, G. "Generalized Formulation for the Behavior of 

Geometrically Curved and Twisted Three-Dimensional Timoshenko Beams and Its 

Isogeometric Analysis Implementation." ASME. J. Appl. Mech. July 2022; 89(7): 071003.
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Connector

• 1D connection elements, named connectors have been formulated. They transversely 

connect pairs of adjacent beams, and account for the in-plane deformability of the cell 

walls.

Figure 13: a) 3D tomographic model of wood mesostructure , b) RT plane view of wood lattices, c) 3D view of 

wood lattices, and d) conceptual diagram of the transverse connector
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Connector

Kinematics:       𝐮𝑐𝐼 = 𝐮𝐼 + 𝜽𝐼 × 𝐱𝑐 − 𝐱𝐼 𝐼 ∈ 1,2 𝐮𝑐 = 𝐮𝑐2 − 𝐮𝑐1

𝐮𝑐1

𝐮𝑐2

Displacement jump

• The formulation of the connectors was derived by allowing discontinuities in displacement and based 

on the cohesive fracture laws for quasi-brittle materials.

𝜀𝑁 = 𝐞𝑁 ∙ 𝐮𝑐 /𝑙 𝜀𝑀 = 𝐞𝑀 ∙ 𝐮𝑐 /𝑙 𝜀𝐿 = 𝐞𝐿 ∙ 𝐮𝑐 /𝑙

For the axial behavior (𝜀𝑁- 𝜎𝑁), constitutive laws: ሶ𝜎 = 𝐸0 ሶ𝜀 0 ≤ σ ≤ 𝜎𝑏𝑡

Effective stress boundary 𝜎𝑏𝑡 = 𝜎0exp −𝐻0 𝜀 − 𝜀0 /𝜎0

Softening modulus 𝐻0 = 𝐻𝑡(
2𝜔

𝜋
)0.2

𝐺𝑡 – tensile fracture energy

𝐸0 – mesoscale normal modulus 

𝛼 – normal-shear coupling ratio

𝜎𝑡 – tensile strength

Strength limit of eff. stress 𝜎0 = 𝜎0 𝜎𝑡 , 𝑟𝑠𝑡 , 𝛼, 𝜔

Softening modulus for pure tension 𝐻𝑡 = 2𝐸0/ 𝑙𝑡/𝑙 − 1

Equilibrium is enforced through the principle of virtual work.

Characteristic length 𝑙𝑡 = 2𝐸0𝐺𝑡/𝜎𝑡
2

𝑟𝑠𝑡 – shear-normal strength ratio

Direction of straining 𝜔: tan𝜔 =
𝜀𝑁

𝛼𝜀𝑇

where effective stress 𝜎 = 𝜎𝑁
2 + 𝜎𝑇

2/𝛼, 𝜎𝑇 = 𝜎𝑀
2 + 𝜎𝐿

2

effective strain 𝜀 = 𝜀𝑁
2 + 𝛼𝜀𝑇

2, 𝜀𝑇 = 𝜀𝑀
2 + 𝜀𝐿

2

Figure 15: Connector geometry and kinematics
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Connector
For the tangential behaviors (𝜀𝑀− 𝜎𝑀 and 𝜀𝐿- 𝜎𝐿), constitutive laws:

ሶ𝜎𝐿 = 𝛼𝐸0 ሶ𝜀𝐿 − ሶ𝜀𝐿
𝑝

ሶ𝜎𝑀 = 𝛼𝐸0 ሶ𝜀𝑀 − ሶ𝜀𝑀
𝑝

Plastic Potential 𝜑 = 𝜎𝑇 − 𝜎𝑏𝑠

The shear stress boundary 𝜎𝑏𝑠 = 𝑟𝑠𝑡𝜎𝑡 + 𝜇0 − 𝜇∞ 𝜎𝑁0 − 𝜇∞𝜎𝑁 − 𝜇0 − 𝜇∞ 𝜎𝑁0exp 𝜎𝑁/𝜎𝑁0

𝐸0 – mesoscale normal modulus 

𝛼 – normal-shear coupling ratio

𝜇0 – initial frictional slope

𝜇∞ – asymptotic frictional slopeሶ𝜀𝑀
𝑝
= ሶ𝜆

𝜕𝜑

𝜕𝜎𝑀
ሶ𝜀𝐿
𝑝
= ሶ𝜆

𝜕𝜑

𝜕𝜎𝐿

𝑟𝑠𝑡 – shear-normal strength ratio

𝜎𝑁0 – transitional normal stress

Figure 16: Connector verifications: a) axial (N) behavior, softening, and b) tangential (M or L) behavior, frictional effect 

𝐸0 = 46480 MPa

𝑘 = 46485.71 MPa

Area = 1.5121e − 4 MPa

𝜎𝑡 = 2.61 MPa

𝜎𝑁,𝑚𝑎𝑥 = 2.61 MPa

𝐺𝑡
𝑙0
=
𝑙𝑡𝜎𝑡

2

2𝐸0
=

200 2.65 2

2(46480) 100
= 1.5109e − 4 MPa

Normal behavior

Shear behavior



Connector: longitudinal direction 
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• Longitudinal connectors have been formed to permit the simulation of fiber rupture. 

They share the same cross-sectional properties with the associated beam elements.

Figure 14: a) Conceptual diagram of the longitudinal connector, b) weak joints in microstructure of wood (modified from [6])

a)

b)

[6] Ref: Thybring, Emil Engelund, and Maria Fredriksson. "Wood modification as a tool to 

understand moisture in wood." Forests 12.3 (2021): 372.



Elastic orthotropy 
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• The macroscopic elastic properties of spruce wood specimens were investigated with 

the CBL model. The material orthotropy was correctly simulated, notice that the in-

plane anisotropy was only from the mesoscale geometry of spruce wood.

Figure 17: Elastic orthotropy of wood, lateral view of: a) L-uniaxial tension test specimen, b) T- tension 

test specimen, c) R- tension test specimen, and d) simulated results

d)

Stretch 

direction



Fracture
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• The CBL model can be used for the simulation of nonlinear behaviors of wood, e.g., fracture. The 

calibration of parameters and the modification of the formulation are ongoing. 

u3, F3

Fixed u3

u2, F2

Bulk force-

disp curve

Fixed u2

u1, F1

Fixed u1
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a) d)b)

• The CBL model can be used for the simulation of nonlinear behaviors of wood, e.g., fracture. The 

calibration of parameters and the modification of the formulation are ongoing. 

Figure 19: a) Preliminary results of tension tests: a) experimental setup, b) 2D mesh of RT (tangential) sample, c) 

2D mesh of TR (radial) sample, d) load v.s. CMOD results (experimental results from [7]) 

𝑃𝑃

u u

c)

[7] Ref: Belalpour Dastjerdi, Parinaz, and Eric N. Landis. "Growth Ring Orientation Effects in 

Transverse Softwood Fracture." Materials 14.19 (2021): 5755.

Fracture
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Conclusions and Future Work

• A 3D Connector-Beam Lattice (CBL) Model has been formulated to capture the cellular 

morphology and the material heterogeneity at mesoscale of wood.

• The macroscopic orthotropic elasticity of wood was correctly simulated with the model.

• The distinct fracturing behaviors in different directions of the notched tension tests of 

wood were captured.

• The formulation of the Beam Lattice Model will be further developed to incorporate 

more nonlinear behaviors (e.g., finite deformation, cell wall buckling) and multiphysics 

analyses (e.g., thermo-hygral induced warping) of engineered wood products.



Thank you!

RingsPy

Github repo

Cusatis group 

website



Wood mesh generation: wood cells
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• Non-overlapped cell points (sites) with radii corresponding to the cell sizes are 

randomly placed in the annual rings structure, a 2D Voronoi mesh is then generated.

Figure 8: a) Random circle placement in the annual rings structure, b) Voronoi tessellation of the wood sites, 

and c) the corresponding 2D Voronoi mesh of a)

a) b) c)
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Isogeometric beam lattice
• The formulation of the beam lattice was derived.

For linear elastic beam behavior:

𝐸𝑏 – beam elastic modulus

𝐺𝑏 – beam shear modulus
𝜎𝑡𝑡 = 𝐸𝑏𝜀𝑡𝑡 𝜏𝑡𝑛 = 𝐺𝑏𝛾𝑡𝑛 𝜏𝑡𝑏 = 𝐺𝑏𝛾𝑡𝑏

The full list of sectional stress resultants:

𝐽 = 1 − 𝜅𝑝𝑛 represents the 

influence of beam curvature 

Introduce the equivalent sectional properties: The elastic behavior can be written as:

𝜏𝑀𝑛 +
𝑑𝑀𝑏

𝑑𝑠
+ 𝑄𝑛 +𝑚𝑏 = 0

𝜅𝑁 +
𝑑𝑄𝑛
𝑑𝑠

− 𝜏𝑄𝑏 + 𝑞𝑛 = 0

𝑑𝑁

𝑑𝑠
− 𝜅𝑄𝑛 + 𝑞𝑡 = 0

𝜏𝑄𝑁 +
𝑑𝑄𝑏
𝑑𝑠

+ 𝑞𝑏 = 0

𝑑𝑀𝑡

𝑑𝑠
− 𝜅𝑀𝑛 +𝑚𝑡 = 0

𝜅𝑀𝑡 +
𝑑𝑀𝑛

𝑑𝑠
− 𝜏𝑀𝑏 − 𝑄𝑏 +𝑚𝑛 = 0

=

Recall the definitions of the generalized sectional 

strains 𝜺0 and sectional flexural strains 𝝌:

𝜺 =
1

𝐽
𝜺0 + 𝝌 × 𝐩

𝝌 =
𝑑𝜽

𝑑𝑠

where  𝜺0 =
𝑑𝐮0

𝑑𝑠
− 𝜽 × 𝐭

Equilibrium eqs. from last page

vector 𝜺 = 𝜀𝑡𝑡 𝛾𝑡𝑛 𝛾𝑡𝑏 T, not tensor 𝝐



Isogeometric beam lattice
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• Isogeometric analysis (IGA) technique, populated by Hughes et al. in 2005 [5], was used to 

accurately represent the geometry, and to alleviate the shear locking of curved beams during the 

analysis.

• The IGA uses Non-Uniform Rational B-Splines (NURBS), which are originally used to represent 

the geometry in CAD industry, as shape functions to interpolate also the solution fields. 

essentially, it is still a finite element method. 

Control points Nodes

𝐮 =෍

𝐼=1

𝑁𝑐𝑝

𝑅𝐼𝐮𝐼
𝑒 𝜽 =෍

𝐼=1

𝑁𝑐𝑝

𝑅𝐼𝜽𝐼
𝑒

where 𝑁𝑐𝑝 is the number of control points supported by one element, 𝑅𝐼 are the NURBS shape functions, 𝐮𝐼
𝑒

is the nodal displacement vector, 𝜽𝐼
𝑒 is the nodal rotation vector.

Figure 11: a) IGA mesh (NURBS geometry), b) FEM mesh (Lagrange geometry)

a) b)

[5] Ref: Hughes, Thomas JR, John A. Cottrell, and Yuri Bazilevs. "Isogeometric analysis: CAD, 

finite elements, NURBS, exact geometry and mesh refinement." Computer methods in applied 

mechanics and engineering 194.39-41 (2005): 4135-4195.



Wood Mesh Generator
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The boundary cutting algorithm

1. Create a bounding box (line segments)

2. Find infinite Voronoi ridges and find the finite end (vertex) 𝐩 of the infinite ridge

3. Store the information for each infinite Voronoi ridge (finite end vertex, 

corresponding site points)

4. Find the intersection point 𝐢 of the infinite Voronoi ridge and the boundary line 

segments using the “intersection” algorithm

5. Replace the infinite ridge to finite ridge with two end vertices: 𝐩 and the 

intersection point 𝐢
6. For the next layer, repeat step 4 and 5 to find new intersection points and new 

finite ridges

𝐩

𝐭

𝐧
𝐢

𝐩

𝐭

𝐧
𝐢

𝐩
𝐭

𝐧

𝐢

Layer 1 (𝜃 = 0) Layer 2 (𝜃 = 30°) Layer 3 (𝜃 = 45°)



Beam Lattice Model: potential failure position of cells
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• The connector element by now only assumes one potential failure position, which is 

the center of the connector (joint of beam fringes).

• From the macroscopic point of view, this assumption is acceptable for describing the 

cell wall fracture and failure (low resolution of cracks).

• However, for some micro-failure mechanisms of wood, e.g., fiber delamination, the 

two ends should also be considered as potential failure positions.

center section

edge sections
Image: Bucur, V. and Martin, P.A., 2011. Delamination in wood, wood products and wood-based composites (p. 402). Springer.



Beam Lattice Model: simulating the Poisson effect
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Poisson effects of the beams: tension in Radial (R) direction, alpha = 0.0625

𝜀22 = Τ𝜕𝑢2 𝜕𝑥2 = −7.54e − 6

𝜎11 = Τ𝐹1 𝐴 = 0.0105 MPa

𝜀11 = Τ𝜎11 𝐸1 ⟹ 𝐸1 = Τ𝜎11 𝜀11 = 757.84 MPa

𝜀11 = Τ𝜕𝑢1 𝜕𝑥1 = 1.38e − 5

𝜀22 = − Τ𝜈12𝜎11 𝐸1 ⟹ 𝜈12 = −𝐸1 Τ𝜀22 𝜎11 = 0.545

𝛼 = 0.0625 ⟺ 𝜈12 = 0.545

𝜈𝑖𝑗 - Poisson's ratio that 

corresponds to a contraction in 𝑗
when an extension is applied in 𝑖



Beam Lattice Model: simulating the Poisson effect
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• The Poisson effect is typically simulated by changing the parameter 𝛼. By reducing 𝛼, 

a discrete assembly of lattices exhibits a larger macroscopic Poisson’s ratio. 

• The spectral stiffness method for the Beam Lattice Model is under development in 

order to find the best fit for direction dependent elastic constants.



Beam Lattice Model: Explicit dynamics formulation

29

• The mass matrix in explicit analysis requires diagonal lumping for the easy inversion 

→ no coupling (off-diagonal) entries → appropriate lumping is needed

No need for globalization



Beam Lattice Model: Element verifications
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• Nonlinear behaviors of the connector: tension in axial (N) direction



Beam Lattice Model: Element verifications
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• Nonlinear behaviors of the connector: pure shear in tangential (M) direction



Beam Lattice Model: Element verifications
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• Nonlinear behaviors of the connector: confined shear in tangential (M) direction
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