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Classical Beam Theories

e In classical beam theories, beam is essentially an one-dimensional
object (only the beam axis exists).

e Assumptions made in both Euler-Bernoulli beam theory and
Timoshenko beam theory:

1. Plane sections remain plane during deformation (rigid cross sections).
2. Plane sections normal to the beam axis in the original configuration.
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Classical Beam Theories

e Euler-Bernoulli beam v.s. Timoshenko beam
p4

Euler-Bernoulli
Timoshenko

Figure 1: Deformation of a Timoshenko beam (blue) compared with that of an
Euler-Bernoulli beam (red)

e If we assume that the plane sections always normal to the beam axis
during the deformation...

e |f the shear deformation is taken into account...
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Classical Beam Theories

e Curved Timoshenko beam

e How to describe an arbitrary curve in space?
e Parametric curve

n(sy) Sy

Figure 2: Parametric curve and local system of references in 2D
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Classical Beam Theories

e Parametric curve
e Express the coordinates of the points of the curve as functions of
variables, called parameters

Figure 3: Parametric curve and location system of references in 2D
e One simple example of parametric curve is a circle in Cartesian
coordinate system, two parameters are radius r and angle t

X =rcost
y =rsint
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Classical Beam Theories

e Curved Timoshenko beam

e How to describe an arbitrary curve in space?
e Parametric curve - parameterized by the arc-length s

x(s)
r(s) = [y(s)
z(s)

Figure 4: Parametric curve and location system of references in 3D

e 3D cases: Frenet-Serret (TNB) frame

e Introduced to describe the kinematic properties of a point moving
along the 3D curve, or the geometric properties of the curve itself

% 0 x 0]t

@l=1-x 0 7| |n (2)
db

@ 0 —7 0| |b
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Classical Beam Theories

e t defines the direction of the cross section (plane normal), n and b
define the local direction in plane.

e Now with the help of the only parameter - arc length s, and the
information of local directions from Frenet-Serret frame, we can
express everything as functions of s.

e For example: position r(s), displacement u(s) and force Q(s) etc.

x(s) ue(s) N(s)

Qn(s) 3)
Qb(s)
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Classical Beam Theories

e 3D curved Timoshenko beam problem

e Kinematics
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Classical Beam Theories

e 3D curved Timoshenko beam problem

Figure 5: Displacements and rotations

e Kinematics

e(s) = % —0xt
40 (5)
x(s) = ds
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Classical Beam Theories

e 3D curved Timoshenko beam problem

Figure 6: Internal and applied forces
e Equilibrium

Q:— Q +/ qg(s)ds=10

S B (6)
M2—M1+(r2x02)—(r1x01)+/ (rxq+m)ds:0

S1
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Classical Beam Theories

e 3D curved Timoshenko beam problem

Figure 6: Internal and applied forces

e Equilibrium

d

ds (7)
dm
—+txQ+m=0
ds

Hao Yin, PhD Candidate

Northwestern | ENGINEERING Mechanice ol QUes B Il SteT A ISIResearenIGrean ity 52



Classical Beam Theories

e Constitutive law (Linear, isotropic, elastic)

Q: EA 0 0 0o 0 O €t
Qn 0 GA, © 0o 0 O €n
Qb - 0 0 GAb 0 0 0 Eph (8)
M| |0 o0 0 Gl 0 0] |y
M, 0 0 0 0 El, O Xn
Mb 0 0 0 0 0 E/b Xb

e Combining equation (5)(7)(8) gives the governing equations of a 3D
curved Timoshenko beam.
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Classical Beam Theories

e But the classical beam theories are derived based on the condition of
the whole cross section.

e Can we find more if we analyze the points which are off the beam
axis themselves?

Figure 7: A generic point P locating off the center line of the beam
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New Beam formulation

e Position vector p

X(S, Pt; Pn; Pb) - r(s) + P
= r(s) + pet + pon + pyb

x(S, P, Pn Do)

Figure 8: A generic point P locating off the center line of the beam
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New Beam formulation

e According to the assumption made in beam theories that the cross

sections normal to the beam axis before deformation
-t=0
g (10)
pr =0

L4 [pta Pn; pb] — [07 Pn, Pb]

X(S, P Pb)

Figure 9: A generic point P locating off the center line of the beam (continued)
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New Beam formulation: Kinematics

e the total displacement of point P can be divided into two parts:

e displacement due to rigid body translation of the cross section Au
e displacement due to rigid body rotation of the cross section Ap

Au

Figure 10: displacement decomposition

e displacement due to rigid body translation of the cross section can
be represented by the displacement at the center of the cross section

Au = ug (11)
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New Beam formulation: Kinematics

e displacement due to rigid body rotation of the cross section Ap,
according to Rodrigues’ rotation formula p’ = Rp

Figure 11: Rodrigues’ rotation formula

Ap=p' —p
=(R-Dhp
= [(sin0)K + (1 — cos ) K?]p
~0Kp=0xp
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New Beam formulation: Kinematics

hence the total displacement u at the material point P

u=ug+0xp (13)
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New Beam formulation: Compatibility
e Recall in Cartesian coordinate system, strain tensor
1
€= E(qu—i-VxUT) (14)

e But our coordinate system is not a Cartesian coord system anymore
- a curvilinear coordinate system instead.

Figure 12: Change in directions of local basis in curvilinear coordinate system
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New Beam formulation: Compatibility

e Hence equation (14) can not be applied directly.

e Luckily, local mapping from curvilinear coordinate system to
Cartesian coordinate system at generic point exists, here we apply
the inverse mapping of gradients

Vtu = VXU -J
1 (15)
qu - Vtu N J
e Calculate Viu and J and substitute all back to strain tensor
1
e=—(e0+x xp)
y (16)
_do
X= s
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New Beam formulation: Equilibrium

e Following the principal of virtual work, the variation of internal work
IWine = / (Utt55tt + Ten0Ven + Ttb57tb) dv
Jv

= / <Utt55tt + Ten0Yen + Ttb57tb> Jdp:dp,dpy (17)
1%

= // (Uttégtt + Ten0Yen + Ttb(S’Ytb) JdAds
IJA

the variation of external work

Wt = / (qebuior + Guduion + GoStios + meS0e + B0y + my305) ds
/
(18)
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New Beam formulation: Equilibrium

e recall the definition of stress resultants (e.g. N = fA owdA,
M, = fA owppdA), then we can derive the equilibrium

dN
(—K@>+m=0
dpt

(HN+dQnTQb)+Qn_0

dpt
d
<7’QN+Qb> +q,=0
dp:
dM (19)
( : —KMH> +me=0
dp:

dM
(/th—‘r d n—T/\/h,)—Qb—i—mn:O

Pt

dM,
<T/\/ln+b> +Qn+my=0
dp:
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New Beam formulation: Governing equations

e If linear elastic...

N:/UttdA:E/EttdA
A A

(20)

d 1

_ E( tor nuOn) / dA + ...

dp: al—Fkpy

e define the equivalent cross sectional properties, for example
1
A* :/ dA (21)
A 1- KPn
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New Beam formulation: Governing equations

d dug, o, b,
Ao . s (oo + % _ 0N _Es i,
= {EA ( s hu(m> + ES;, (hat + I 79;,) ES; (79 + I ”
duon d
- [GA; (h-um + % — rug — &) -as; (ﬁ ) )} g =0
s
. [ du . o, ) df
K [EA (d—;' - xum> +ES; (Hat - Teb) — ES; (Tan + T:”
d d d
— [GA; (wm R, 79b) as:, (ﬂ ) )}
s ds
—r [GA; (moﬁ%w”) L as; (ﬁ — kb, )] .- 0
- [GA; (wm + d;“s‘" - eb) Gs: (@ —nh )}
+di [GA; (mw + ? + 9") +as; (T — k), )} fg—0
[GS (Tuu" + % +9, ) Gs: (hUm + dT — Tug, — eb> +ar; (ﬂ — kb, )}
ES; (ﬂ — Kugy ) + BT, (Kel +%n 7795) — EI (n@n + @ﬂ +m =0
[GS (Tuu" dugy > - Gs;, (hUm +d77m0reb +ar; (@ — Kb, ”
s
4 [EH" (d“”' - h‘uu”) +EI, (h‘ﬁt + % - 7%) - EBI, (Tﬁw + %)}
L ([ du . a,, . db,
+7 [Esb <Ts“' - xuu") +EI (x@t tot- rab) — EI (79" + d—s””
. duop g (e _ _
{G:’l,, (mmﬂr s +€n) +GS; (d f, )} +m, =0
o [ dug . db,, . 6,
T [Eb < d;' - h-u,m) +EI, <ﬁ9t - 79b> —EI, (79 + T;H
d dug, e (o o G _ _E b,
= [ES (d_ - huu") +EI, (Aﬁt + e 765) El, (79., + o )}

+ [GA; (fcum + % — Tugy — 95) -GS, (ﬂ - h9n>] +my =0

=a

—K
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Implementation with Isogeometric Analysis

e Isogeometric Analysis (IGA) can be seen as an extension of Finite
Element Method (FEM).

e Non-Uniform Rational B-Splines (NURBS) are used in IGA as basis
functions for Finite Element, which are commonly used for the
geometry description in CAD.

e More convenient, more accurate version of FEM.

W FEM mesh
| | FEM

Figure 13: Isogeometric Analysis v.s. Finite Element Method
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Implementation with Isogeometric Analysis

e Since our new beam formulation is a "quasi-3D"” formulation, to
verify this new formulation, we compared the results in IGA with
beam elements with the results in IGA with solid elements.

F
§

Figure 14: Spiral staircase- beam elements (left), solid elements (right)
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Implementation with Isogeometric Analysis

e The new beam formulation is directly derived from the compatibility
conditions at generic points, for thick beam, it performs better than
classical beam formulations.

0 02 04 0. 08 1 0 04

6 2 06 08 1
Slenderness Ratio h/R Slenderness Ratio h/R

Figure 15: quarter circle beam (left), relative error in U, (mid), relative error in
U, (right)
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Implementation with Isogeometric Analysis

e The position of the beam axis now can be picked arbitrarily.
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Figure 16: Locations of the beam axis (left), relative error in U, (mid), relative error in U, (right)
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Implementation with Isogeometric Analysis

e Which makes the following shape of cross section possible.

x;(s, €,m1)

Figure 17: Typical shape of curved beams in the wood lattice model
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Implementation with Isogeometric Analysis

e For our wood lattice model, since we need to model many thousands

- even a million beams simultaneously, it has to be computationally
efficient.

1024 beam elements 1024 x 16 x 2 solid elements
Number of elements in beam solid
longitudinal direction
16 0.87 3.55
64 0.97 16.73
256 2.56 106.89
1024 8.99 3232414

Figure 18: Running time (unit: second)
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Implementation with Isogeometric Analysis
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Figure 19: Convergence study
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Questions?

Hao Yin
haoyin2022@u.northwestern.edu
www.cusatis.us
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