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Classical Beam Theories

• In classical beam theories, beam is essentially an one-dimensional
object (only the beam axis exists).

• Assumptions made in both Euler-Bernoulli beam theory and
Timoshenko beam theory:

1. Plane sections remain plane during deformation (rigid cross sections).
2. Plane sections normal to the beam axis in the original configuration.
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Classical Beam Theories

• Euler-Bernoulli beam v.s. Timoshenko beam

Figure 1: Deformation of a Timoshenko beam (blue) compared with that of an
Euler-Bernoulli beam (red)

• If we assume that the plane sections always normal to the beam axis
during the deformation...

• If the shear deformation is taken into account...
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Classical Beam Theories

• Curved Timoshenko beam

• How to describe an arbitrary curve in space?
• Parametric curve

Figure 2: Parametric curve and local system of references in 2D
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Classical Beam Theories

• Parametric curve
• Express the coordinates of the points of the curve as functions of

variables, called parameters

Figure 3: Parametric curve and location system of references in 2D

• One simple example of parametric curve is a circle in Cartesian
coordinate system, two parameters are radius r and angle t

x = r cos t
y = r sin t

(1)
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Classical Beam Theories

• Curved Timoshenko beam

• How to describe an arbitrary curve in space?
• Parametric curve - parameterized by the arc-length s

Figure 4: Parametric curve and location system of references in 3D

• 3D cases: Frenet-Serret (TNB) frame

• Introduced to describe the kinematic properties of a point moving
along the 3D curve, or the geometric properties of the curve itself dt

ds
dn
ds
db
ds

 =

 0 κ 0
−κ 0 τ
0 −τ 0

t
n
b

 (2)
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Classical Beam Theories

• t defines the direction of the cross section (plane normal), n and b
define the local direction in plane.

• Now with the help of the only parameter - arc length s, and the
information of local directions from Frenet-Serret frame, we can
express everything as functions of s.

• For example: position r(s), displacement u(s) and force Q(s) etc.

r(s) =

x(s)
y(s)
z(s)

 ,u(s) =

ut(s)
un(s)
ub(s)

 ,Q(s) =

N(s)
Qn(s)
Qb(s)

 (3)
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Classical Beam Theories

• 3D curved Timoshenko beam problem

Figure 5: Displacements and rotations

• Kinematics

θ2 − θ1 =

∫ s2

s1

χ(s)ds

u2 − u1 −
∫ s2

s1

(θ × t)ds =

∫ s2

s1

ε(s)ds

(4)
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Classical Beam Theories

• 3D curved Timoshenko beam problem

Figure 5: Displacements and rotations

• Kinematics

ε(s) =
du
ds
− θ × t

χ(s) =
dθ

ds

(5)
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Classical Beam Theories

• 3D curved Timoshenko beam problem

Figure 6: Internal and applied forces

• Equilibrium

Q2 −Q1 +

∫ s2

s1

q(s)ds = 0

M2 −M1 + (r 2 ×Q2)− (r 1 ×Q1) +

∫ s2

s1

(r × q + m)ds = 0

(6)
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Classical Beam Theories

• 3D curved Timoshenko beam problem

Figure 6: Internal and applied forces

• Equilibrium

dQ
ds

+ q = 0

dM
ds

+ t ×Q + m = 0

(7)
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Classical Beam Theories

• Constitutive law (Linear, isotropic, elastic)
Qt

Qn

Qb

Mt

Mn

Mb

 =


EA 0 0 0 0 0
0 GAn 0 0 0 0
0 0 GAb 0 0 0
0 0 0 GIt 0 0
0 0 0 0 EIn 0
0 0 0 0 0 EIb




εt
εn
εb
χt

χn

χb

 (8)

• Combining equation (5)(7)(8) gives the governing equations of a 3D
curved Timoshenko beam.
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Classical Beam Theories

• But the classical beam theories are derived based on the condition of
the whole cross section.

• Can we find more if we analyze the points which are off the beam
axis themselves?

Figure 7: A generic point P locating off the center line of the beam
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New Beam formulation

• Position vector p

x(s, pt , pn, pb) = r(s) + p
= r(s) + ptt + pnn + pbb

(9)

Figure 8: A generic point P locating off the center line of the beam

Hao Yin, PhD Candidate

Mechanics of Quasi-Brittle Materials Research Group - 14/32



New Beam formulation

• According to the assumption made in beam theories that the cross
sections normal to the beam axis before deformation

p · t = 0

pt = 0
(10)

• [pt , pn, pb]→ [0, pn, pb]

Figure 9: A generic point P locating off the center line of the beam (continued)
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New Beam formulation: Kinematics

• the total displacement of point P can be divided into two parts:

• displacement due to rigid body translation of the cross section ∆u
• displacement due to rigid body rotation of the cross section ∆p

Figure 10: displacement decomposition

• displacement due to rigid body translation of the cross section can
be represented by the displacement at the center of the cross section

∆u = u0 (11)
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New Beam formulation: Kinematics

• displacement due to rigid body rotation of the cross section ∆p,
according to Rodrigues’ rotation formula p′ = Rp

Figure 11: Rodrigues’ rotation formula

∆p = p′ − p
= (R − I )p

= [(sin θ)K + (1− cos θ)K 2]p
≈ θKp = θ × p

(12)
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New Beam formulation: Kinematics

hence the total displacement u at the material point P

u = u0 + θ × p (13)
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New Beam formulation: Compatibility

• Recall in Cartesian coordinate system, strain tensor

ε =
1

2
(∇Xu +∇XuT ) (14)

• But our coordinate system is not a Cartesian coord system anymore
- a curvilinear coordinate system instead.

Figure 12: Change in directions of local basis in curvilinear coordinate system
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New Beam formulation: Compatibility

• Hence equation (14) can not be applied directly.

• Luckily, local mapping from curvilinear coordinate system to
Cartesian coordinate system at generic point exists, here we apply
the inverse mapping of gradients

∇tu = ∇Xu · J
∇Xu = ∇tu · J−1

(15)

• Calculate ∇tu and J and substitute all back to strain tensor

ε =
1

J
(ε0 + χ× p)

χ =
dθ

ds

(16)

Hao Yin, PhD Candidate

Mechanics of Quasi-Brittle Materials Research Group - 20/32



New Beam formulation: Equilibrium

• Following the principal of virtual work, the variation of internal work

δWint =

∫
V

(
σttδεtt + τtnδγtn + τtbδγtb

)
dV

=

∫
V

(
σttδεtt + τtnδγtn + τtbδγtb

)
Jdptdpndpb

=

∫
l

∫
A

(
σttδεtt + τtnδγtn + τtbδγtb

)
JdAds

(17)

the variation of external work

δWext =

∫
l

(
qtδu0t + qnδu0n + qbδu0b + mtδθt + mnδθn + mbδθb

)
ds

(18)

Hao Yin, PhD Candidate

Mechanics of Quasi-Brittle Materials Research Group - 21/32



New Beam formulation: Equilibrium

• recall the definition of stress resultants (e.g. N =
∫
A
σttdA,

Mn =
∫
A
σttpbdA), then we can derive the equilibrium(

dN

dpt
− κQn

)
+ qt = 0(

κN +
dQn

dpt
− τQb

)
+ qn = 0(

τQN +
dQb

dpt

)
+ qb = 0(

dMt

dpt
− κMn

)
+ mt = 0(

κMt +
dMn

dpt
− τMb

)
− Qb + mn = 0(

τMn +
dMb

dpt

)
+ Qn + mb = 0

(19)
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New Beam formulation: Governing equations

• If linear elastic...

N =

∫
A

σttdA = E

∫
A

εttdA

= E

(
du0t

dpt
− κu0n

)∫
A

1

1− κpn
dA + ...

(20)

• define the equivalent cross sectional properties, for example

A∗ =

∫
A

1

1− κpn
dA (21)
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New Beam formulation: Governing equations
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Implementation with Isogeometric Analysis

• Isogeometric Analysis (IGA) can be seen as an extension of Finite
Element Method (FEM).

• Non-Uniform Rational B-Splines (NURBS) are used in IGA as basis
functions for Finite Element, which are commonly used for the
geometry description in CAD.

• More convenient, more accurate version of FEM.

Figure 13: Isogeometric Analysis v.s. Finite Element Method
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Implementation with Isogeometric Analysis

• Since our new beam formulation is a ”quasi-3D” formulation, to
verify this new formulation, we compared the results in IGA with
beam elements with the results in IGA with solid elements.

Figure 14: Spiral staircase- beam elements (left), solid elements (right)
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Implementation with Isogeometric Analysis

• The new beam formulation is directly derived from the compatibility
conditions at generic points, for thick beam, it performs better than
classical beam formulations.

Figure 15: quarter circle beam (left), relative error in Ux (mid), relative error in
Uy (right)
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Implementation with Isogeometric Analysis

• The position of the beam axis now can be picked arbitrarily.

Figure 16: Locations of the beam axis (left), relative error in Ux (mid), relative error in Uy (right)
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Implementation with Isogeometric Analysis

• Which makes the following shape of cross section possible.

Figure 17: Typical shape of curved beams in the wood lattice model
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Implementation with Isogeometric Analysis

• For our wood lattice model, since we need to model many thousands
- even a million beams simultaneously, it has to be computationally
efficient.

Figure 18: Running time (unit: second)
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Implementation with Isogeometric Analysis

Figure 19: Convergence study
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Questions?
Hao Yin

haoyin2022@u.northwestern.edu
www.cusatis.us
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