
Inter-process Communication &

Coupling between Abaqus Solvers

Evanston, IL

10 May 2021

Hao Yin

1

Outline

• Motivations

• Introduction to Inter-process Communication

• Coupling between Abaqus Solvers

• Application – the Multiphysics-LDPM Framework

2

Motivations

Multiphysics problems

• Multiphysics is defined as the coupled processes or systems involving more than

one simultaneously occurring physical fields and the studies of and knowledge

about these processes and systems. ------ Wikipedia

Picture source: Adina Multiphysics Homepage

3

Motivations
Solving Multiphysics problems
• For example, for a thermo-elasticity problem

• Fully-coupled approaches

• Sequential approaches

• In Abaqus, we have following built-in procedures to solve Multiphysics problems:

• Built-in coupled elements (fully-coupled)

• SIMULIA co-simulation engine (sequential)

However…

Transport
solver

Mechanical
solver

𝜌𝑐 ሶ𝑇 = −∇ ∙ 𝐪(𝐮, 𝑇) + 𝑠

𝜌 ሷ𝐮 = div𝝈 𝐮, 𝑇 + 𝜌𝐛

Displacement field 𝐮

Temperature field 𝐓

𝐌11 𝐌12

𝐌21 𝐌22

ሷ𝐔
ሷ𝐓
+

𝐂11 𝐂12
𝐂21 𝐂22

ሶ𝐔
ሶ𝐓
+

𝐊11 𝐊12

𝐊21 𝐊22

𝐔
𝐓

=
𝐅
𝐐

in 𝛺 × 0, 𝑡

𝐮 = 𝐮𝑔 on Γ𝑢𝑔 × 0, 𝑡 𝑇 = 𝑇𝑔 on Γ𝑇𝑔 × 0, 𝑡

𝝈 ∙ 𝐧 = 𝐭ℎ on Γ𝑢ℎ × 0, 𝑡 𝐪 ∙ 𝐧 = 𝐣ℎ on Γ𝑇ℎ × 0, 𝑡

4

LDPM tets

(explicit solver)

Transport conduits

(edge elements)

(implicit solver)

Motivations

Dual lattice systems in Multiphysics-LDPM

This type of problems is also called “multidomain” or “multimodel” coupling.

Different meshes for coupled physical fields and mechanical fields!

• Fully-coupled approaches • Sequential approaches
spatial mapping?

temporal mapping?

5

Outline

• Motivations

• Introduction to Inter-process Communication

• Coupling between Abaqus Solvers

• Application – the Multiphysics-LDPM Framework

6

• Inter-process communication (IPC) refers to the coordination of activities

among cooperating processes. This communication could involve a

process letting another process know that some event has occurred or

the transferring of data from one process to another.

Inter-process Communication

Process 1:
e.g. Abaqus/Standard

solver

Process 2:
e.g. Abaqus/Explicit

solver

Pipes

Sockets

Shared
memory

• For our applications of IPC in solving Multiphysics problems, the

processes are different simulation solvers (e.g. Abaqus/Ansys/in-house

codes/other solvers).

7

Pipes

• Using pipe is a simple synchronized way of passing information between two

processes. A pipe can be viewed as a special file that can store only a limited

amount of data and uses a FIFO access scheme to retrieve data. In a logical view of

a pipe, data is written to one end and read from the other.

• Pipes come in two varieties:

• Unnamed. Unnamed pipes can only be used by related processes (i.e. a

process and one of its child processes, or two of its children). Unnamed pipes

cease to exist after the processes are done using them.

• Named. Named pipes exist as directory entries, complete with permissions.

This means that they are persistent and that unrelated processes can use

them.

• Pipes can be used on both Unix and Windows OS platforms, but Windows version

need some special treatments.

Inter-process Communication

8

Named pipes - workflow

Run

Process 1
Step 1

Buffer 1

Write data from buffer to
named pipe

Run

Process 2
Step 1

Buffer 1

start

time

Process 1 holds
until process 2
receives pipe data

Read data from
named pipe to buffer

Named pipe 2
Write data
from buffer to
named pipe

Buffer 2

Read data from
named pipe to buffer

Buffer 2

Process 2 holds
until process 1
receives pipe data

Process 1
Step 2

Legend
data flow in Process 1
data flow in Process 2

Named pipe 1

Inter-process Communication

9

Outline

• Motivations

• Introduction to Inter-process Communication

• Coupling between Abaqus Solvers

• Application – the Multiphysics-LDPM Framework

10

FLM analysis

LDPM analysis

While FLM analysis is running,
field variables are regularly
sent via IPC tools

Abaqus/standard solver

Abaqus/explicit solver

Named pipes
(or other IPC tools)

field variables to be
exchanged:
1. Nodal moisture

content ℎ
2. Nodal temperature 𝑇
3. Crack opening 𝜹 (18

components)
4. Volumetric strain 휀𝑉

Mechanical field variables

Legend

data from FLM to LDPM
data from LDPM to FLM

map field variables from
FLM mesh to LDPM mesh

Transport field variables

Transport field variables

Mechanical field variables

Similarly, while LDPM analysis
is running, field variables are
regularly exchanged via IPC
tools.

map field
variables from
LDPM mesh to
FLM mesh

Coupling between Abaqus Solvers

11

Coupling Scheme

• Coupling Scheme

• Parallel explicit coupling scheme (Jacobi)
In a parallel explicit coupling scheme, both simulations are executed concurrently, exchanging

fields to update the respective solutions at the next target time. - more efficient use of computing

resources; less stable than the sequential scheme

• Sequential explicit coupling scheme (Gauss-Seidel)
In a sequential explicit coupling scheme, the simulations are executed in sequential order. One

analysis leads while the other analysis lags the co-simulation.

Picture source: Abaqus Analysis User’s Manual - Co-simulation using MpCCI

Coupling between Abaqus Solvers

https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/usb/default.htm?startat=pt04ch13s01aus79.html

12

Time Incrementation Scheme

• Time Incrementation Scheme

Picture source: Abaqus Standard & Abaqus Explicit Co-Simulation | SIMULIA How-To Tutorial

Coupling between Abaqus Solvers

https://www.youtube.com/watch?v=z1Xy7WcmMH4&feature=youtu.be&ab_channel=SIMULIA

13

Named pipes – pseudocodes

pseudocode for named pipes in process 1
Subroutine VUEL(...)

Declare variables
real(dp), dimension(n,m) :: FLMdata
real(dp), dimension(nn,mm) :: LDPMdata
integer,parameter :: V2U = 100
integer,parameter :: U2V = 101 # unit numbers
for named pipes
⋮

Send data to named pipes
open(unit=V2U,file=‘pipe_name_for_V2U.pipe’,
action=‘write’)
write(unit=V2U,format=‘any_format’) LDPMdata
close(unit=V2U)
Retrieve data from named pipes
open(unit=U2V,file=‘pipe_name_for_U2V.pipe’,
action=‘read’)
read(unit=U2V,format=‘any_format’) FLMdata
close(unit=U2V)

Physical model here
LDPMdata = umat_LDPM(...,FLMdata)

End subroutine VUEL

Coupling between Abaqus Solvers

pseudocode for named pipes in process 2

⋮

retrieve data from named pipes
open(unit=V2U,file=‘pipe_name_for_V2U.pipe’,
action=‘read’)
read(unit=V2U,format=‘any_format’) LDPMdata
close(unit=V2U)
send data to named pipes
open(unit=U2V,file=‘pipe_name_for_U2V.pipe’,
action=‘write’)
read(unit=U2V,format=‘any_format’) FLMdata
close(unit=U2V)

Physical model here
FLMdata = HTCmodel(..., LDPMdata)

End subroutine VUEL

14

Named pipes on Northwestern Quest

• Batch job is somehow not an ideal choice to submit jobs involving pipes (need to

check).

• If submitting multiple Abaqus jobs using one single batch file, then only the first

Abaqus job will be executed.

• If submitting jobs using multiple separate batch files, then each job will be

assigned to a different Quest node. Communication between Quest nodes is

possible but difficult – Firewall/network protection applies.

• Use interactive job instead.

• Use the command: srun --account=p12345 --partition=short -N 1 -n 4 --mem=12G -

-time=01:00:00 --pty bash –l to run an interactive bash session on a single

compute node with four cores, and access to 12GB of RAM for up to an hour,

debited to the p12345 account.

• In bash command line session, run the following commands:
• cd /your/abaqus/working/directory on Quest
• module load abaqus/2020
• mkfifo FLM2LDPM.pipe
• mkfifo LDPM2FLM.pipe
• abaqus job=FLMjobname input=FLMjobname.inp USER=UEL_FLM.for ask_delete=OFF
• abaqus job=LDPMjobname input=LDPMjobname.inp USER=VUEL_LDPMM.for double=both

ask_delete=OFF

Coupling between Abaqus Solvers

15

A few tips about coupling via IPC

• Format

• when writing and reading with named pipes or sockets, the format should be

explicitly declared and consistent in both processes.

Coupling between Abaqus Solvers

write(unit=V2U,format=‘(F20.8)’)
LDPMdata

In process 1: In process 2:

read(unit=V2U,format=‘(I8)’)
LDPMdata

write(unit=V2U,format=‘(F20.8)’)
LDPMdata

In process 1: In process 2:

read(unit=V2U,format=‘(F20.8)’)
LDPMdata √

write(unit=V2U,format=*)
LDPMdata

In process 1: In process 2:

read(unit=V2U,format=*)
LDPMdata

16

A few tips about coupling via IPC

• stage, step and increment flags in Abaqus

Coupling between Abaqus Solvers

lOp = 0
kstep = 0
kinc = 0
time(1) = 0.0

Abaqus/Standard

0 run

Abaqus/Explicit

start of the analysis

start of the step

end of the step

lOp = 5
kstep = 1
kinc = 1
time(1) = 0.0

lOp = 1
kstep = 1
kinc = 1
time(1) = 0.0

lOp = 1
kstep = 1
kinc = 1
time(1) = 0.0

lOp = 2
kstep = 1
kinc = 1
time(1) = time increment 1

lOp = 6

lOp = 3 end of the analysis

⋮

start of the increment

*** initialization (all variables = 0)

start of the increment

apply initial conditions/predefined fields

end of the increment

1 run

2 run

3 run
kinc +=1

lOp = 0
kstep = 0
kinc = 0
time(1) = 0.0

Abaqus/Explicit packager

0 run

lOp = a random integer
kstep = 0
kinc = 0
time(1) = 0.0

Abaqus/Explicit packager

1 run

time(1)
+= ∆𝑡

kstep = 1
kinc = 0
time(1) = 0.0

Abaqus/Explicit analysis

2 - # (2+ninc) run

kstep = 1
kinc = ninc
time(1) = end time

⋮

17

Outline

• Motivations

• Introduction to Inter-process Communication

• Coupling between Abaqus Solvers

• Application – the Multiphysics-LDPM Framework

18

In Abaqus user subroutine code VUEL_LDPM.for (Mar 26, 2021 version)

Application – the Multiphysics-LDPM Framework

Call KMASSLDPM

Line 331-399

Line 400-418

Line 427

calculate element mass matrix

svars file settings

read external files

mass calc

switch calculation flag

yes

internal force
and stable
time calc

yes

external
force calc

no

no

end subroutine VUEL

yes
Call BODYF_LDPM

update svars
and svars files

Update tet geometries Line 459-521

calculate element body force vector

Call MPcoupler

Call SUBLDPM

update tet geometries, calc volumetric strains

Call cal_stable_time

Line 1185-1525

Line 1552-1649

Line 1552-1649

calculate stable time increment

Line
561-617

Loop over facetsLine 533

update facet
geometries

Call umatLDPM

Line
871-999

calculate
energies, force

vector &
stiffness matrix

add imposed
stresses

LDPM material
constitutive laws

import Multiphysics fields, calc
imposed strains and stresses

add imposed
strains

Line
1091
-1148

Line 1058

Line
797-1154

start subroutine VUEL

19

In subroutine MPcoupler

Application – the Multiphysics-LDPM Framework

call MPinterpolater

call MPinitializer

switch procedure flag

yes

yes

no

no

end subroutine MPcoupler

yes

start subroutine MPcoupler

aging
model?

creep
model?

thermal
strains?

volumetric
strains?

Imposed
stresses?

Call aging

Call ImposedCreepStrain

Call ImposedThermalStrain

update svarsCall ImposedStress
yes

Call ImposedVolStrain

yes

no

no

no

read Multiphysics fields, time increment info, and other data from named pipes or external files

perform the Spatial interpolation and temporal interpolation

calculate aging degree, cement hydration degree,
silica fume degree etc.

calculate imposed creep strains

calculate imposed thermal strains

calculate imposed volumetric strains

calculate imposed stresses

20

In subroutine MPcoupler

Application – the Multiphysics-LDPM Framework

Input: Multiphysics fields, Multiphysics geometries (e.g. spatial interpolation dictionary),

Multiphysics time increment info, analysis procedure flags, and other info from basic LDPM

output: Multiphysics state variables stvMP

stvMP = facet 1

facet 2

facet 12

⋮

stvMP 1 stvMP 2 stvMP n…

svars(21:20+nstvMP) = stvMP(1:nstvMP)then in subroutine VUEL , update:

Intermediate output: Interpolated Multiphysics fields MPfields

MPfields = facet 1

facet 2

facet 12

⋮

field 𝜃1 rate ሶ𝜃1 field 𝜃2 rate ሶ𝜃2 … field 𝜃𝑛 rate ሶ𝜃𝑛

21

Application – the Multiphysics-LDPM Framework

Edge Flow Lattice

Multiphysics-LDPM

Pressure p

Volumetric strain εV

Crack opening 𝛿N

Biot’s coefficient

Poroelasticity problem, radial expansion in a thick-walled cylinder due to pore

pressure (Grassl et al. JMPS 2015).

Mechanical Lattice

ത𝜎𝑁 = 𝜎𝑁 + 𝜎𝑁
𝑝
= 𝑓 휀𝑁, 휀𝑇 , …

𝜎𝑁
𝑝
= −𝑏𝑝

Effective facet normal stress

Imposed stress

22

Analytical solution:

where:

𝐸𝑐 =
2 + 3𝛼

4 + 𝛼
𝐸0 𝜈 =

1 − 𝛼

4 + 𝛼

ത𝑢 =
𝑢

𝑟𝑖

ത𝑃𝑓 =
𝑃𝑓

𝐸𝑐

ҧ𝑟 =
𝑟

𝑟𝑖

ത𝑃𝑓𝑖 =
𝑃𝑓𝑖

𝐸𝑐

ҧ𝑟𝑜 =
𝑟𝑜
𝑟𝑖

𝐸𝑐 - Macroscopic Young’s modulus, 𝜈 – Macroscopic Poisson’s ratio

𝐸0 - Mesoscopic Young’s modulus, α – Shear-normal coupling coefficient

Note: the total stress on the

boundary in mechanical

analysis is equal to the fluid

pressure on the boundary in
diffusion analysis.

Application – the Multiphysics-LDPM Framework

Poroelasticity problem, radial expansion in a thick-walled cylinder due to pore

pressure.

23

𝑏 = 1.0

𝑏 = 0.5

𝑏 = 0

Parameters: 𝜈 = 0, 𝑟𝑖 = 100 mm, 𝑟𝑜 = 725 mm, 𝑃𝑓𝑖 = 50 MPa

Application – the Multiphysics-LDPM Framework

Poroelasticity problem, radial expansion in a thick-walled cylinder due to pore

pressure.

24

To be continued…

	Slide 0: Inter-process Communication & Coupling between Abaqus Solvers
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: To be continued…

