Hao Yin

	Phone: +44 7570634748	E-mail: kingyin3613@foxmail.com	Website: http://haoyin.io
EDUCATION			
Postdoc @ Un	iversity of Cambridge	Advisor: Vikram Deshpande	07/2024 – present
Postdoc @ No	rthwestern University	Advisor: Gianluca Cusatis	01/2024 - 06/2024
Ph.D. in Civil	Engineering @ Northwest	tern University Advisor: Gianluca Cu	satis 09/2018 – 12/2023
Thesis: Discre	te Modeling of Fracture and	d Flow in Porous Quasi-brittle Materials b	y Capturing the Internal Structure
Committee: Zo	leněk Bažant, Gianluca Cus	atis, Eric Landis, and John Rudnicki	
M.S. in Civil I	Engineering @ University	of Illinois at Urbana-Champaign (UIUC	09/2016-05/2018
B.S. in Civil B	Engineering @ China Agri	cultural University (CAU)	09/2012 - 06/2016

PUBLICATIONS

- Yin, H. and Cusatis, G., 2025. Generative conforming delaunay graph for discrete modeling of intercellular transport. Journal of Open Source Software, In preparation.
- Huang, C., Shen, L., Yu, W., Alkayem, N., Yin, H. and Cusatis, G., 2024. High-fidelity method for mesoscopic rheology of fresh fiber-reinforced concrete based on sph-dem. *International Journal of Mechanical Sciences, Under Review*.
- 3. Yin, H., Treomner, M., Li, W., Yang, L., Shen, L., Alnaggar, M., Di Luzio, G. and Cusatis, G., 2024. An interprocess communication-based two-way coupling approach for implicit-explicit multiphysics lattice discrete particle model simulations. *Engineering Fracture Mechanics*, *310*, p.110515.
- 4. Yin, H., Landis, E., and Cusatis, G., 2024. Connector-beam lattice model for wood: from micromorphology simulation to macroscopic behaviors prediction. *Journal of the Mechanics and Physics of Solids, Under Review.*
- Yin, H., Cibelli, A., Brown, S.A., Yang, L., Shen, L., Alnaggar, M., Cusatis, G., and Di Luzio, G., 2023. Flow lattice model for the simulation of chemistry dependent transport phenomena in cementitious materials. *European Journal of Environmental and Civil Engineering*, 28(5), pp.1039-1063.
- Tong, D., Brown, S.A., Yin, H., Corr, D., Landis, E., Di Luzio, G. and Cusatis, G., 2023. Orthotropic hygroscopic behavior of mass timber: theory, computation, and experimental validation. *Materials and Structures*, 56(6), p.109.
- 7. Yin, H. and Cusatis, G., 2023. Ringspy: a python package for voronoi mesh generation of cellular solids with radial growth pattern. *Journal of Open Source Software*, 8(83), p.4945.
- Eliáš, J., Yin, H. and Cusatis, G., 2022. Homogenization of discrete diffusion models by asymptotic expansion. International Journal for Numerical and Analytical Methods in Geomechanics, 46(16), pp.3052-3073.
- Shen, L., Zhang, H., Di Luzio, G., Yin, H., Yang, L. and Cusatis, G., 2022. Mesoscopic discrete modeling of multiaxial load-induced thermal strain of concrete at high temperature. *International Journal of Mechanical Sciences*, 232, p.107613.

- Yin, H., Lale, E. and Cusatis, G., 2022. Generalized formulation for the behavior of geometrically curved and twisted three-dimensional timoshenko beams and its isogeometric analysis implementation. *Journal of Applied Mechanics*, 89(7), p.071003.
- Wang, C., Peng, H., Bian, L., Yin, H., Sofi, M., Song, Z. and Zhou, Z., 2021. Performance of alkali-activated cementitious composite mortar used for insulating walls. *Journal of Building Engineering*, 44, p.102867.
- Jing, G.Q., Aela, P., Fu, H. and Yin, H., 2019. Numerical and experimental analysis of single tie push tests on different shapes of concrete sleepers in ballasted tracks. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 233(7), pp.666-677.
- Yin, H., Qian, Y., Edwards, J.R. and Zhu, K., 2018. Investigation of relationship between train speed and bolted rail joint fatigue life using finite element analysis. *Transportation Research Record*, 2672(10), pp.85-95.
- Shao, S., Jing, G. and Yin, H., 2016. Ballast flight risk assessment based on reliability theory. International Journal of Simulation Systems, Science & Technology, 17, p.36.
- Wang, Z., Jing, G., Yu, Q. and Yin, H., 2015. Analysis of ballast direct shear tests by discrete element method under different normal stress. *Measurement*, 63, pp.17-24.

PRESENTATIONS

- Yin, H., Treomner, M., Li, W., Lale, E., Alnaggar, M., Yang, L., Shen, L., Di Luzio, G., and Cusatis, G., 2024. Multiphysics lattice discrete particle model (m-ldpm) for the coupling of diffusion processes and fracture. ASCE EMI/PMC 2024 Conference, Chicago, IL.
- Treomner, M., Brown, S.A., Yin, H., and Cusatis, G., 2024. Connector and beam lattice (cbl) model for the simulation of wood under high strain rates. ASCE EMI/PMC 2024 Conference, Chicago, IL.
- Cusatis, G, Yin, H., Treomner, M., Li, W., Pathirage, M., Alnaggar, M., Yang, L., Shen, L., and Di Luzio, G., 2024. A multiphysics-lattice discrete particle model (m-ldpm) framework for fully coupled fracture-fluid interactions. *Concreep12 Conference*, Delft, The Netherlands.
- Yin, H., Lale, E., and Cusatis, G., 2022. A novel 3d discrete beam lattice model: from mesostructure to macroscopic behaviors of wood. ASCE EMI 2022 Conference, Baltimore, MD.

PATENTS

- 1. Yin, H., "A Water Damage Test Device for Asphalt Concrete Pavements". CN Patent #2014207575876, 2015.
- 2. Yin, H., "A Railway Ballast Cover Plate". CN Patent #2014203065268, 2014.

RESEARCH EXPERIENCE

Graph-based Learning and design of Advanced Mechanical Metamaterials	07/2024 - Present
The UKRI Engineering and Physical Sciences Research Council Project EP/X02394X/1	
• Conducted theoretical and computational analyses of Indentation Size Effect (ISE) of 2D and 3D octet-	
truss architected solids.	
• Conducted in-situ x-ray CT and digital volume correlation (DVC) measurement of indentation tests of	
3D octet-truss architected solids.	
Computational Tools for the Multiscale Simulation of Engineered Wood Products (EWP) Under	07/2022 - 06/2024
Dynamic Loading Conditions	
A Project Funded by the U.S. Army Engineer Research and Development Center (ERDC)	
• Formulated a mixed-mode constitutive model for dynamic and strain-rate effects in wood fracture.	
• Developed a dynamic Connector-Beam Lattice (dynaCBL) model for simulating strain-rate	
dependent behaviors of Engineered Wood Products (EWP) under impact loading conditions.	
High Performance Fiber Reinforced Concrete Systems using Carbon Fibers at Multiple Length	01/2023 - 09/2023
Scales	
A Project Funded by ExxonMobil	
• Designed and conducted mechanical property tests of nanomodified concrete with carbon nanotubes	
(CNT) and turbostratic graphenes.	
Enabling Innovation in Sustainable Structural Building Systems Through Multiscale Modeling	07/2018 - 06/2022
and Experimentation of Mass Timber	
The National Natural Science Foundation Project CMMI-1762757	
• Derived a Generalized Timoshenko beam theory and implemented with Isogeometric Analysis (IGA).	
• Developed the Connector-Beam Lattice (CBL) model – a discrete modeling framework to investigate	
the heterogeneous and anisotropic mechanical and fracture behaviors of wood.	
• Developed a computational pipeline for the preprocessing-analysis-postprocessing for the CBL model.	
PROFESSIONAL EXPERIENCE	
Research Associate	07/2024 - Present
Department of Engineering, University of Cambridge	
Postdoctoral Scholar	01/2024 - 06/2024
Department of Civil and Environmental Engineering, Northwestern University	
Graduate Research Assistant	09/2018 - 12/2023
Department of Civil and Environmental Engineering, Northwestern University	

Graduate Teaching Assistant

Northwestern University

- CIV_ENV 216: Mechanics of Materials (19 Winter, 20 Winter, 20 Spring, 21 Spring, 22 Winter)
- MECH_ENG 327: Finite Elements Methods in Mechanics (20 Fall)

Graduate Research Assistant01/2017 – 12/2017Rail Transportation and Engineering Center (RailTEC), University of Illinois at Urbana-Champaign06/2015 – 09/2015Structural Design Intern06/2015 – 09/2015

Beijing Institute of Architectural Design (BIAD), Beijing, China

HONORS & AWARDS

Graduate Research Fellowship	Northwestern University		09/2018
Excellent Student Scholarship &	Academic Excellence Scholarship	China Agricultural University	06/2014

PROFESSIONAL SERVICES & ACTIVITIES

Member	2023 - present
American Society of Civil Engineers (ASCE), American Society of Mechanical Engineers (ASME)	
Conference Session Moderator	06/2021
The 6th Biot-Bažant Conference on Engineering Mechanics and Physics of Porous Materials and Structures	
Journal Paper Reviewer	2018 – present
Transportation Research Record, Journal of Open Source Software, Mathematics and Mechanics of Solids,	
Wood Science and Technology, Journal of Building Engineering, Structural Concrete, Measurement, etc.	